• Title/Summary/Keyword: Fire-resistance-structure

Search Result 206, Processing Time 0.022 seconds

Review on the Fire Resistance and Pumpability Performance of Fiber Reinforced High Strength Concrete

  • Kwon, Hae-Won;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • Currently, many high-rise buildings are built in Korea for land-efficient utilization and vista. In high-rise buildings this tall, the use of high-strength concrete is essential to reduce the cross-section of structure members and secure axial load. However, this high strength concrete is vulnerable to spalling by fire, due to the water vapor pressure caused by the very high temperature in fire. To prevent this, the main method used is to reinforce the concrete with fiber. However, there has been little research on the pumpability of fiber reinforced high strength concrete. For this reason, this study features a performance review based on the properties and pumpability of fiber reinforced high strength concrete. In addition, the parameter of rheology was measured by extracting mortar from the concrete, and friction factor was measured through a 400 m horizontal pipe pumping test using the fiber reinforced high strength concrete. The basic information on fiber reinforced high strength concrete that we obtain through the experiments and review will contribute to the field.

Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete Under Various Temperatures (콘크리트에 표면매입 보강된 탄소섬유 판의 온도에 따른 부착성능)

  • Seo, Soo-Yeon;Kim, Jeong-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • This paper presents a series of test result in order to study fire resistance capacity of the Near-Surface-Mounted (NSM) Carbon Fiber Reinforced Polymer (CFRP) plate, which are tensile test of CFRP under various temperature loading, temperature loading test of epoxy and bond test of NSM CFRP to concrete under various temperature loading. From the tests, it was found that NSM retrofit method had high efficiency in strengthening concrete under ordinary temperature. However, the strength of the system was able to be drastically decreased even a little increase of surrounding temperature. Especially, bond capacity begins to disappear when the surrounding temperature approaches the glass transition temperature of epoxy. Therefore, it is necessary to improve the fire resistance capacity of both fiber reinforced polymer reinforcement and epoxy for bonding in order to develop safe fire resistance design of structure.

Numerical analysis of partially fire protected composite slabs

  • Zaharia, R.;Vulcu, C.;Vassart, O.;Gernay, T.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.21-39
    • /
    • 2013
  • The paper presents a numerical investigation, done with the computer program SAFIR, in order to obtain simpler finite element models for representing the behaviour of the partially protected composite steel concrete slabs in fire situations, considering the membrane action. Appropriate understanding and modelling of the particular behaviour of composite slabs allows a safe approach, but also substantial savings on the thermal insulation that has to be applied on the underlying steel structure. The influence of some critical parameters on the behaviour and fire resistance of composite slabs such as the amount of reinforcing steel, the thickness of the slab and the edge conditions is also highlighted. The results of the numerical analyses are compared with the results of three full scale fire tests on composite slabs that have been performed in recent years.

Temperature on structural steelworks insulated by inorganic intumescent coating

  • Choi, J. Yoon;Choi, Sengkwan
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Predicting the fire resistance of structures has been significantly advanced by full scale fire tests in conjunction with improved understanding of compartmental fire. Despite the progress, application of insulation is still required to parts of structural steelwork to achieve over 60 minutes of fire rating. It is now recognised that uncertainties on insulation properties hinder adaptation of performance based designs for different types of structures. Intumescent coating has recently appeared to be one of most popular insulation types for steel structures, but its design method remains to be confirmed by empirical data, as technical difficulties on the determination of the material properties at elevated temperatures exist. These need to take into account of further physiochemical transitions such as moving boundary and endothermic reaction. The impetus for this research is to investigate the applicability of the conventional differential equation solution which examines the temperature rise on coated steel members by an inorganic intumescent coating, provided that the temperature-dependent thermal/mechanical insulation properties are experimentally defined in lab scale tests.

An Experimental Study on Setup of Classification System of Fire Resistance Wall Structure (벽체 내화성능 분류체계 설정을 위한 실험적 연구)

  • Choi, Dong-Ho;Kim, Dae-Hoi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.111-114
    • /
    • 2011
  • 건축물은 화재시 그 피해를 최소화하기 위해서 주요 구조부를 일정 수준의 내화구조로 시공되어야 한다. 현재 국내에서는 건축물 주요 구조부의 내화성능을 인정한 법정 내화구조를 규정하고 있으나 외국에 비하여 내화성능 및 구조의 구분없이 일률적으로 3시간의 내화성능을 규정하고 있으며, 이 경우도 규정된 후 상당한 시일이 경과되어 최근의 재료 및 공법 등을 적절히 수용하지 못하고 있는 실정이다. 이에 따라 현재 건축물 세부구조, 부위별로 내화성능을 세분화하여 규정할 필요가 있으며. 이를 위해 내화구조의 시험 자료를 근거로 한 경제적, 효율적 제도개선이 요구된다. 이에 본 연구에서는 국내의 법정내화구조로 규정된 벽체 구조를 대상으로 내화성능을 평가하여 각 구조별로 법정내화구조를 세분화한 기초자료를 제시하였다.

  • PDF

Overview of the Benefits of Structural Fire Engineering

  • Jowsey, Allan;Scott, Peter;Torero, Jose
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The field of structural fire engineering has evolved within the construction industry, driven largely by the acceptance of performance-based or goal-based design. This evolution has brought two disciplines very close together - that of structural engineering and fire engineering. This paper presents an overview of structural systems that are frequently adopted in tall building design; typical beams and columns, concrete filled steel tube columns and long span beams with web openings. It is shown that these structural members require a structural analysis in relation to their temperature evolution and failure modes to determine adequate thermal protection for a given fire resistance period. When this is accounted for, a more explicit understanding of the behaviour of the structure and significant cost savings can be achieved. This paper demonstrates the importance of structural fire assessments in the context of tall building design. It is shown that structural engineers are more than capable of assessing structural capacity in the event of fire using published methodologies. Rather than assumed performance, this approach can result in a safe and quantified design in the event of a fire.

An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns (내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.499-509
    • /
    • 2014
  • This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. The purpose of the study is to evaluate the load capacity and deformation capacity associated with the amount of steel fiber and loading condition and to analyze the interplay between the steel fiber reinforced concrete and the welding built-up square tube in terms of structure and fire resistance performance. Reinforcement of concrete with steel fiber(Vf=0.375%), when cross-section shape and boundary condition (load ratio) remained unchanged, improved fire resistance performance by 1.1~1.3 times. It is deemed that the area resisting thermal load increased and fire resistance performance was improved since the concrete reinforced with steel fiber restrained cracking. In addition, the fact that the cross-sections of the concrete were barely damaged indicates that load share capacity was greatly improved.

Analytical Study on the Fire Resistance of SC Composite Column (SC 합성기둥의 내화성능에 대한 해석연구)

  • Lim, Yoon Hee;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2007
  • The steel-concrete composite column (i.e., the SC composite column) supports large-gravity loads and simplifies the installation and removal of the work in pouring the concrete. The column takes advantage of the in-plant prefabrication of steel, the speed of erection of a steel structure, and the fire resistance of steel. This paper presents the results of a parametric study using heat transfer analysis and a P-M interaction curve, and compares these results with the experimental results to check the accuracy of the proposed parametric studies. The parametric studies, such as the study of the concrete ratio of an area and the fire protection thickness, provide information on the fire resistance of SC composite columns.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials (직포 및 코팅재 타입에 따른 건축용 막재의 난연성능)

  • Kim, Ji Hyeon;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.545-551
    • /
    • 2016
  • Membrane structures which can be used large spatial structure are being expanded because of various advantages. However, despite the diverse membrane structure buildings and materials, the standard for membrane material performance that considering fire safety is still inadequate. Therefore, this study applied basalt or glass woven fabric with flame resistance on architectural membrane, and report the fire safety for architectural membrane using the strength properties, flammability and incombustibility. From the test result, the architectural membrane using basalt or glass woven fabric showed a low heat release rate and total heat release. Therefore, it was confirmed that the fire safety is relatively high.