• 제목/요약/키워드: Fire-Detection

검색결과 653건 처리시간 0.024초

Fast and Efficient Method for Fire Detection Using Image Processing

  • Celik, Turgay
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.881-890
    • /
    • 2010
  • Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE $L^*a^*b^*$ color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method.

An Intelligent Fire Detection Algorithm for Fire Detector

  • Hong, Sung-Ho;Choi, Moon-Su
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.6-10
    • /
    • 2012
  • This paper presents a study on the analysis for reducing the number of false alarms in fire detection system. In order to intelligent algorithm fuzzy logic is adopted in developing fire detection system to reduce false alarm. The intelligent fire detection algorithm compared and analyzed the fire and non-fire signatures measured in circuits simulating flame fire and smoldering fire. The algorithm has input variables obtained by fire experiment with K-type thermocouple and optical smoke sensor. Also triangular membership function is used for inference rules. And the antecedent part of inference rules consists of temperature and smoke density, and the consequent part consists of fire probability. A fire-experiment is conducted with paper, plastic, and n-heptane to simulate actual fire situation. The results show that the intelligent fire detection algorithm suggested in this study can more effectively discriminate signatures between fire and similar fire.

사례 분석을 통한 IoT 기반 화재탐지시스템의 화재 감지신호 특성 (A Case Study of the Characteristics of Fire-Detection Signals of IoT-based Fire-Detection System)

  • 박승환;김두현;김성철
    • 한국안전학회지
    • /
    • 제37권3호
    • /
    • pp.16-23
    • /
    • 2022
  • This study aims to provide a fundamental material for identifying fire and no-fire signals using the detection signal characteristics of IoT-based fire-detection systems. Unlike analog automatic fire-detection equipment, IoT-based fire-detection systems employ wireless digital communication and are connected to a server. If a detection signal exceeds a threshold value, the measured values are saved to a server within seconds. This study was conducted with the detection data saved from seven fire accidents that took place in traditional markets from 2020 to 2021, in addition to 233 fire alarm data that have been saved in the K institute from 2016 to 2020. The saved values demonstrated variable and continuous VC-Signals. Additionally, we discovered that the detection signals of two fire accidents in the K institution had a VC-Signal. In the 233 fire alarms that took place over the span of 5 years, 31% of smoke alarms and 30% of temperature alarms demonstrated a VC-Signal. Therefore, if we selectively recognize VC-Signals as fire signals, we can reduce about 70% of false alarms.

움직임 정보와 칼라정보 분석을 통한 화재검출 알고리즘 (Fire Detection Algorithm Based On Motion Information and Color Information Analysis)

  • 최홍석;문광석;김종남;박승섭
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.180-188
    • /
    • 2016
  • In this paper, we propose a fire detection algorithm based on motion information and color information analysis. Conventional fire detection algorithms have as main problem the difficulty to detect fire due to external light, intensity, background image complexity, and little fire diffusion. So we propose a fire detection algorithm that accurate and fast. First, it analyzes the motion information in video data and then set the first candidate. Second, it determines this domain after analyzing the color and the domain. This algorithm assures a fast fire detection and a high accuracy compared with conventional fire detection algorithms. Our algorithm will be useful to real-time fire detection in real world.

퍼지논리 및 다중신호를 이용한 화재감지시스템의 개발 (The Development of Fire Detection System Using Fuzzy Logic and Multivariate Signature)

  • 홍성호;김두현
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.49-55
    • /
    • 2004
  • This study presents an analysis of comparison of P-type fire detection system with fuzzy logic-applied fire detection system. The fuzzy logic-applied fire detection system has input variables obtained by fire experiment of small scale with K-type temperature sensor and optical smoke sensor. And the antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire probability. Also triangular fuzzy membership function is used for input variables and fuzzy rules. To calculate the final fire probability a centroid method is introduced. A fire experiment is conducted with controlling wood crib layer, cigarette to simulate actual fire and false alarm situation. The results show that peak fire probability is 25[%] for non-fire and is more than 80[%] for fire situation, respectively. The fuzzy logic-applied fire detection system suggested here is able to distinguish fire situation and non-fire situation very precisely.

조기 경보를 위한 화재 판단 알고리즘을 이용한 무선 센서네트워크 기반 화재 감시 응용 시스템 설계 및 구현 (Development of WSN(Wireless Sensor Network)-based Fire Monitoring Application System using Fire Detection Algorithm for Early Warning)

  • 김아름;조경진;장재우;심춘보
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.504-514
    • /
    • 2009
  • 최근 문화재나 시설물 관리를 위한 화재 감시 응용 시스템에 대한 요구가 증대되고 있다. 이러한 화재 감시 시스템은 화재 상황을 대처할 수 있도록 지원함으로써 피해규모를 축소시킬 수 있다. 그러나 기존 시스템은 일정 주기로 화재 감시를 수행함으로써 화재 판단을 지연시키는 단점이 존재한다. 또한 감시 상황을 확인 할 수 있는 사용자 인터페이스를 제공하지 않는다. 따라서 이러한 두 가지 문제점을 해결하기 위하여 첫째, 조기 위험상황 경보를 위해 새로운 화재 판단 알고리즘(Early Fire Detection Algorithm)을 제안한다. 이는 데이터 분포를 기반으로 하여 화재 판단 시작 주기를 동적으로 설정하기 때문에, 화재 판단 시간 측면에서 기존 알고리즘 보다 우수하다. 둘째, 제안하는 화재 판단 알고리즘을 통하여 사용자 인터페이스를 제공하는 화재 감시 응용 시스템을 개발한다. 마지막으로 성능 실험을 통해, 개발된 시스템이 다양한 화재 상황에서 조기 위험상황 경보를 위해 활용될 수 있음을 보인다.

YOLOv8을 이용한 실시간 화재 검출 방법 (Real-Time Fire Detection Method Using YOLOv8)

  • 이태희;박천수
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.77-80
    • /
    • 2023
  • Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.

  • PDF

IoT 기반 화재탐지시스템의 연기 및 온도감지기 비화재보 신호 패턴 분석 (Analysis of Unwanted Fire Alarm Signal Pattern of Smoke / Temperature Detector in the IoT-Based Fire Detection System)

  • 박승환;김두현;김성철
    • 한국안전학회지
    • /
    • 제37권2호
    • /
    • pp.69-75
    • /
    • 2022
  • Fire-alarm systems are safety equipment that facilitate rapid evacuation and early suppression in case of fire. It is highly desirable that fire-alarm systems have low false-alarm rates and are thus reliable. Until now, researchers have attempted to improve detector performance by applying new technologies such as IoT. To this end, IoT-based fire-detection systems have been developed. However, due to scarcity of large-scale operational data, researchers have barely studied malfunctioning in fire-alarm systems or attempted to reduce false-alarm rates in these systems. In this study, we analyzed false-alarm rates of smoke/temperature detectors and unwanted fire-alarm signal patterns at K institution, where Korea's largest IoT-based fire-detection system operates. After analyzing the fire alarm occurrences at the institution for five years, we inferred that the IoT-based fire-detection system showed lower false-alarm rates compared to the automatic fire-detection equipment. We analyzed the detection pattern by dividing it into two parts: normal operation and unwanted fire alarms. When a specific signal pattern was filtered out, the false-alarm rate was reduced to 66.9% in the smoke detector and to 46.9% in the temperature detector.

Fire Detection System Using Arduino Sensor

  • Cheong, Ha-Young
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.624-629
    • /
    • 2016
  • Recently various types of disaster monitoring system using smart-phones are under active studying. In this paper, we propose a system that automatically performs the disaster and fire detection. Additionally we implement the Arduino-based smart image sensor system in the web platform. When a fire is detected, an SMS is sent to the Fire and Disaster Management Agency. In order to improve fire detection probability, we proposed a smart Arduino fire detection sensor simulation which searches the smart sensor inference algorithm using fuzzy rules.

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF