• Title/Summary/Keyword: Fire- and explosion safety

Search Result 403, Processing Time 0.029 seconds

A Study on Facility Criteria of Small Petrol Stations based on Quantitative Risk Assessment (정량적 위험성 평가에 기반한 간이 주유취급소 시설기준에 대한 연구)

  • Park, Wooin;Ku, Jae-Hyun;Song, Yong-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Small petrol stations have great potential for a wide distribution in metropolitan area in which the land value possesses primary installation cost of the facility. The objective of the present study is to propose appropriate facility regulations of small petrol stations in Korea that can be popularly installed in the future in terms of securing safety in addition to serviceability. The hazard analysis and damage prediction from the possible fire and explosion accidents were performed using a software, PHAST v.6.5. As essential components of the facility regulations proposed in this study, the regulations about the refueling lot, maximum capacity of underground tank, location of fixed refueling facilities, height of firewall for small petrol stations were subsequently compared with those for regular-sized petrol stations.

A Study on the Measurement of Explosion Range by CO2 Addition for the Process Safety Operation of Propylene (프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구)

  • Choi, Yu-Jung;Heo, Jong-Man;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.599-606
    • /
    • 2019
  • Most facilities that manufacture products made from the hazardous materials operate at high temperatures and pressures. Therefore, there is a risk of fire explosion. In particular, an explosion accident is a major risk factor for facilities with hazardous materials, such as oil, chemical, and gas. Propylene is often used in sites producing basic raw materials and synthetic materials by addition polymerization at petrochemical plants. To prevent an explosion in the business using propylene, the explosion range with the oxygen concentration was calculated according to the changes in temperature and pressure using an inert gas, carbon dioxide. In these measurements, the temperature was $25^{\circ}C$, $100^{\circ}C$, and $200^{\circ}C$ and the amount of carbon dioxide in the container was $1.0kgf/cm^2.G$, $1.5kgf/cm^2.G$, $2.0kgf/cm^2.G$, and $2.5kgf/cm^2.G$. The explosion limit was related to temperature, pressure, and oxygen concentration. The minimum oxygen concentration for an explosion decreased with increasing temperature and pressure. The range of explosion narrowed with decreasing oxygen concentration. In addition, no explosion occurred at concentrations below the minimum oxygen concentration, even with steam and an ignition source of propylene.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

A Study on the Prediction of City Gas Accident Damage by Consequence Analysis (Consequence Analysis를 통한 도시가스 사고 피해 예측에 관한 연구)

  • An, Jung-sik;Kim, Jihye;Yu, Jihoon;Kim, Jongkyoung;Kang, Subi;Cho, Donghyun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.36-40
    • /
    • 2022
  • Recently, the biggest topic in the industry is the area of industrial safety and health management. Since city gas is flammable gas and has a high risk of fire and explosion, much effort is required to prevent serious industrial and citizenry disasters. As part of city gas safety management, this study attempted to quantitatively predict the scope and degree of damage in the event of an explosion accident caused by city gas leakage through the Consequence Analysis. As a result, there was a difference in the accident result value according to various leakage conditions such as pressure and weather conditions. Through this study, a scenario of explosion due to city gas leakage will be prepared when performing city gas safety management work and used to prepare more effective accident prevention and emergency action plans.

A Study of the Ignition Mechanism in Electric Condenser Iksan Firestation (콘덴서의 발화 메커니즘 실험)

  • Kim, Sang-Soon;Lee, Jae-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.103-113
    • /
    • 2021
  • As the use of capacitors in electrical appliances and electrical control circuits increases, the related electrical fire is increasing. There are various parts such as resistors, coils, and capacitors that make up an electric circuit. Among them, the ignition of a capacitor with a temporary charging function is closely related to the structural characteristics of the capacitor. Capacitors can explode due to various reasons, and the high heat generated when they explode ignites the inflammable dielectric, which in turn burns the inflammable materials such as the surrounding electric wires and spreads into a fire. In this paper, the ignition mechanism is studied by conducting a reenactment experiment on the various probabilities that can be ignited in an electric capacitor, and the prevention measures to be applied to the fire prevention are presented.

Development of the Safety Cabinet for Respiratory High-Pressure cylinder according to Consequence Analysis of Physical Explosion Damage (호흡용 고압용기 파열 피해영향 분석에 따른 안전충전함 개발)

  • Jang, Kap Man;Kim, Jeong Hwan;Jang, Yu Ri;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.80-88
    • /
    • 2016
  • A fire station and scuba have operated filling facilities for respiratory high-pressure cylinder without getting authority or reporting according to High-Pressure Gas Safety Control Act. They need facility improvement and special management to make provision for the time of accident during filling process. The Government have strived to correct illegal operations and suggested an alternative, establishing and operating the safety cabinet. It insures a safety being distance from danger caused by overpressure and a safety provoked by the protective wall equals or superiors. The safety cabinet is required to have an internal structure that smoothly distribute overpressure at the time of rupture. Plus, it needs to minimize fragments. It is also equipped with the performance of protective wall that makes overpressure to outside vent on the place where there is no person (top or bottom). This study calculated the consequence of physical explosion damage and built a prototype of safety cabinet. In addition, through the gas burst test, it derives for the ways to mitigate the physical explosion damage.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.