모형에 의한 산불의 확산 속도와 강도의 분석은 0.5 m/sec와 1 m/sec로 변화를 준 후 이러한 풍속의 변화에 따라 산불의 강도와 확산속도를 분석한 결과 풍속의 변화에 따라 산불의 확산속도와 강도가 다르게 나타나고 있으며, 불이 시작되어서 끝날 때까지의 시간은 0.5 m/sec에서는 161초, 1 m/sec에서는 146초 정도 소요되는 것으로 나타났다. 산불의 확산속도는 0.5 m/sec에서는 평균 0.014 m/sec, 1 m/sec에서는 0.020 m/sec로 0.5 m/sec에 비하여 약 1,4배정도 빠르게 나타났다. 산불의 강도는 풍속 0.5 m/sec에서는 0.183 ㎾/m, 1 m/sec에서는 0.259㎾/m로 0.5m/sec에 비하여 약 1.4배정도 차이가 났으며, 속도가 빠르면 산불의 강도 또한 큰 것으로 나타났다. 본 연구에서 사용된 모형에 의한 산불확산 속도와 강조의 분석은 산불 실험을 실험실내에서 실시한 외국의 사례가 다소 있으나 외국 사례에서는 본 실험에서 제작된 것과 같은 산악형이 아니라 평지형의 모델을 이용하여 실험을 실시 한 것들이다. 본 연구에서는 우리의 실정에 맞는 산악형의 모델을 사용하고자 도면상의 실측모양으로 모형을 제작하였으나 모델의 크기가 너무 작아 임지내의 지피물을 이용한 실험을 할 수 없게 되어 외국의 사례에도 있었던 toothpick을 이용하여 실험을 실시하였다. 본 연구의 결과를 토대로 차후의 연구에서는 다양하고 (풍속의 변이를 다양하게 주거나 임지내의 다양한 연료를 이용한 각 연료 특성에 따른 산불의 확산 형태 및 강도 분석, 연료의 수분함량 차이에 대한 분석 등) 대규모의 모형을 이용한 실험을 유도한다면 본 실험에서 얻어진 결과 보다 좀더 정밀한 산불의 확산 속도와 강도를 예측할 수 있을 것으로 판단된다. 이러한 실험실내의 산불의 확산속도와 강도의 분석은 산불확산 모델을 수립하기 위한 기본적인 자료를 구축하고 정밀한 예측자료에 의한 산불 발생시 진화방법의 개발 등에 대한 기본data로서의 역할을 충분히 할 수 있을 것으로 사료된다.
In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.
산불의 확산특성은 일반적으로 가연물의 특성, 지형, 바람조건과 같은 기상 상태등과 관련이 있다. 산불의 발달과정에 있어 수치해석을 통한 확산예측 모델은 열전달 과정에 기본을 둔 열에너지 전달에 대한 해석이 가장 일반적인 방법론이다. 산불의 발생시 열에너지의 전파속도를 해석하는 것은 화염의 생성과 열전달, 그리고 소멸에 이르는 전 과정에 대한 물리적, 화학적 해석을 통해 화염의 이동에 따른 전파속도로 추정할 수 있다. 본 논문에서는 고체연소물질의 표면화염전파에 대한 수치해석을 통해 1차원 지표화 확산모델식을 제시하였다. 1차원 확산모델식은 평지상태에서 풍속조건에 따른 화염의 전파속도 산정식으로써 지표연료의 화염유지시간, 화염의 높이, 화염의 온도, 지표연료의 착화온도 등에 대한 실험 및 이론식을 적용하였다. 실험값 및 다른 모델식과의 ROS 비교 결과, 풍속 3 m/s 이하의 조건에서는 지수함수식의 증가곡선을 나타내는 경향을 보였다. 침엽수종인 소나무 낙엽에 대한 수치해석값과 실험값을 비교한 결과, 풍속 1-2m/s 조건에서는 확산속도가 약 10% 상향예측이 되었고 풍속 3m/s 조건에서는 약 20% 하향예측 되었다. 따라서 앞으로 지표화 확산 예측을 위해 본 연구결과에서 얻어진 화염확산 알고리즘을 이용한 초기 산불확산 예측 적용이 가능할 것으로 사료된다.
본 논문에서는 공연장 무대 화재 시 객석으로의 연기 확산에 방화막 및 강제 배연구가 미치는 영향에 대하여 Fire Dynamics Simulator (FDS)를 이용하여 연구를 수행하였다. 폭 31 m, 깊이 34 m, 높이 32 m의 무대에 대하여, 10 MW의 열방출률과 화재성장속도가 fast인 화재를 적용하였다. 강제 배출량은 화재안전기준과 기존 연구를 토대로 설정하였으며, 방화막과 프로시니움 (Proscenium) 벽 사이 간격은 0 m, 0.5 m인 경우를 대상으로 하였다. 방화막과 프로시니움 벽이 완벽하게 밀착되어 있는 경우, 강제 배연구와는 상관없이 객석으로의 연기 확산은 일어나지 않았다. 방화막과 프로시니움 벽 사이의 간격이 0.5 m인 경우, 방화막이 없는 경우에 비해 무대 공간 내에서 연기층이 더욱 낮은 높이까지 하강하였으며, 이는 방화막에 의해 객석으로의 연기 확산이 방해받았기 때문이다. 한편, 동일한 방화막 조건에서, 강제 배연구가 있는 경우가 없는 경우에 비해 방화막과 프로시니움 벽 사이 간격을 통한 유출 질량유량이 작았다. 본 연구를 통하여 방화막과 강제 배연구가 공연장 무대 화재 시 객석으로의 연기 확산을 억제할 수 있는 효과적인 방법임을 확인하였다.
In the case of the fire outburst within a partitioned space, it can disappear inside it through smoldering process if the fire cannot obtain sufficient imflammability. On the contrary, if it obtains it, the fire is not restricted within the room, spreading to the higher levels beyond outside windows and the compartment room. The method to prevent the fire spread through windows is considered to build a balcony or equip with sprinkler facilities. This case study is to identify which effects and controlibility a balcony brings about on the spread of fire through a full scale model experiment. In order to understand the effects of fire spread on the upper levels of the room on fire by changing the length of balcony, the temperature was measured, radiant heat was investigated, and products of combustion were analyzed. The result showed that when fire occured, longer length of the balcony, which linked to the outside wall of the apartments, led to the blocking of the fire spread, lower level of radiant heat, and significantly less transfer of toxic gases, and the driving force of the outburst of flame was identified as the attractive force due to the turbulence of uncombusted gases, which exist on the upper level of the outbursting flame.
To analyze vertical fire spreadability of aluminum composite panel, real scale test of aluminum composite panel and fire retardant aluminum composite panel was conducted as well as analysis of domestic code, test and domestic reaserch resulted in following conclusion. Fire spread risk assessment of aluminum Composite Panel is impossible with the current regulations (Cone Calorimeter Test). It need to changes of regulatory and combustion expanded risk assessment and regulatory changes in the test methods need to be judged. Also, there is quite a big different between the general aluminum Composite Panel and semi-non combustible of aluminum Composite Panel. However it is also deemed to be danger when present in the sidewall to the top consisting of fire spread. From now on, it is needed the study about interpretation of fire spread and sidewall of vertical fire spread analysis not only experiments for aluminum Composite Panel.
In this study, we compared Oxygen Index by ISO 4589-2 with Fire Spread by ISO 5658-2. The result shows that the tset values of Fire Spread such as IT, CFE, Qsb have mutual relations with thoses of Oxygen Index values in some samples. And we found that the tset values of Fire Spread make up for the insufficient points of Oxygen Index has its limits to evaluate the properties of fire for the interior materials of the railroad vehicles.
In previous studies, fire simulation was used to estimate the fire spread path. According to previous studies, the fire spread path was estimated to be the main staircase, but consideration of interior materials and internal bulkheads was insufficient. In this study, the ignition time of the 3rd layer was analyzed using the prediction formula considering the interior materials and internal bulkheads. As a result of referring to the architectural drawings, it was found that the interior material of the 3rd floor was made of polystyrene. The internal ignition time of the third floor using FDTs was calculated to be 14,070 seconds (about 234 minutes). The internal ignition time of the 3rd floor using the Handbook on Design Calculation Methods of Fire Behavior was calculated to be 3,104 seconds (about 51 minutes). As a result of calculating the ignition time through the predictive formula, there is a large difference in the ignition time, so it is necessary to review the condition of the variable as a result of the calculation in the future.
산불의 확산에 있어 바람은 매우 중요한 인자이다. 바람은 또한 지형에 따라 변화되며 이로 인해 다른 확산형태를 가지게 된다. 따라서 산불의 확산속도 해석을 위해 먼저 풍속에 따른 화염각 변화를 살펴볼 수 있다. 이는 바람에 의해 변화된 화염각으로 인해 미연소 지표 대상물에 열전달의 차이를 가져오기 때문이다. 풍속이 증가할수록 화염과 지표면이 가까워짐으로 인해 열전달이 증가되어 미연소물질이 착화온도에 빨리 도달하게 되어 화염의 확산속도가 빨라지게 된다. 따라서 본 연구에서는 바람에 의한 화염각 변화 산정식을 Froude number 관계식을 이용한 수치해석과 실험을 통해 제시하였다. 그 결과, Froude number 계수 A=1.85를 제시하였고 제시된 식에 대한 실험 화염각의 평균 오차각은 약 $3.3^{\circ}$로 다른 모델식에 비해 실험값과 유사한 결과를 나타내었다. 향후, 이 연구를 통해 열전달 수치해석을 통한 화염확산연구에 활용될 수 있을 것으로 사료된다.
한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
/
pp.305-310
/
1997
There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.