• Title/Summary/Keyword: Fire safety corporation

Search Result 134, Processing Time 0.032 seconds

Accidents Analysis of Domestic and Overseas Refueling Stations and Assessment of Dangerous Distance by Gas Leak (국내·외 충전소 사고 현황 분석 및 가스누출 피해거리 평가)

  • Kim, Hyelim;Kang, SeungKyu;Huh, YunSil
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As environmental problems become a problem of survival, interest in eco-friendly energy is increasing to improve the environment. So, demand for eco-friendly fuels such as hydrogen, LPG and CNG is increasing. In particular, Korea, which relies on imports of most fuels, is investing in the development of hydrogen energy, which is favorable in terms of high production volume and energy independence. However, As demand grows every year, a variety of accidents occur in various ways, ranging from small leak incidents to massive fires and explosion, thus research needs to be done. So, in this study, compared and analyzed cases of hydrogen, LPG, CNG accidents occurring at domestic and overseas refueling stations. and various programs were used for assessing risk, estimated the flame length due to gas leakage and evaluated the dangerous distance.

Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent (과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구)

  • Park, Jin-Young;Bang, Sun-Bae;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • If an overcurrent exceeding the rated value is applied to an electric wire, the temperature of the electric wire increases, and the electric wire covering deteriorates to cause a short circuit. The upper limit temperature of the wire varies according to the magnitude of the overcurrent. When a short circuit occurs at each upper temperature limit, a cooling speed difference occurs during the solidification process due to the temperature difference between the short circuit temperature and the wire surface temperature. At this time, the pattern characteristics of the dendritic structure formed on the molten cross section are different. In this study, the upper temperature limit, which varied according to the overcurrent magnitude, was measured. At the time a short circuit occurred, the second branch spacing (dendrite Arm Spacing : DAS) of the dendrite was analyzed and the numerical value was quantified. The experimental results showed that the upper temperature limit increases with the magnitude of the overcurrent, and that the second branch spacing increases with increasing wire temperature.

A Study on the Variation of Explosion Characteristics by the Block in Closed Vessel (밀폐 공간내 Block에 의한 폭발특성 변화에 관한 연구)

  • Oh Kyuhyung;Kim Jongbok;Lee Seungeun;Kim Hong;Lee Youngchul;Park Sungsu
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.23-28
    • /
    • 1999
  • Variation of explosion characteristics by the blocks in closed vessel was investigated to analyse the effect of the block volume(volume blockage) and the surface area of the blocks(ratio of block surface area to vessel volume). Volume and surface area of blocks in explosion vessel were changed by the combination of blocks. The volume of explosion vessels was 270 liter, and the LPG-air or NG-air mixtures were ignited by the electric spark. Explosion pressure was measured with the strain type pressure transducer. From the experimental results, explosion pressure was decreased by the increase of the volume blockage and the block surface area. And the decrease of explosion pressure was more affected by the volume blockage than the surface area.

  • PDF

A Study on the Minimum Safe Separation Distance from LPG Filling Station (액화석유가스 충전소의 안전거리에 관한 연구)

  • Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-33
    • /
    • 1999
  • The minimum safe separation distances from LPG filling station was discussed in this work based on the accident data from 1987 to 1998 in south korea, the initial damage of accident, and standards of countries. The safety distances are adequate to reduce ignition probability by released gas and provide space for implementation of emergency response after ignition. Therefore, the distances are related to the distance to LFL(Lower Flammable Limit) and the length of jet fire to prevent accident escalation. The range of the distance was suggested in this work to make standard with considering economic, culture, and safe guards.

  • PDF

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Study of Fire Examples for Electrical Wire Short and Insulated Coating Melting by Heating Including Automotive Engine Room (자동차 엔진룸 관련 전기 배선의 단락 및 열에 의한 절연피복 용융에 대한 화재사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Youm, Kwang Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.15-19
    • /
    • 2013
  • This paper is to analyze and study the cause of fire examples produced because of short phenomenon by electric connecting damage and contacting engine over-heating with combustible materials in engine room of vehicle. In the first example, it knew the fact that the fire produced by contacting with body of vehicle because of loosed of bracket bolt for wire fixing that installed on the transmission case the battery power cable supply the power from battery of engine room to starting motor. In the second example, it certified the fire by short phenomenon because of insulation tape melting wound wiring lined from battery to starting motor. In the third example, it sought for fire's cause that melting phenomenon the wire coating by overheated engine as the wire disconnected with connector by the vibration. Therefore, the fire of system including engine electric made in the danger the people in the car by failure of engine and other system. And than, the car's driver must manage and examine a vehicle conscientiously.

Electrical Properties of 6.6kV Cable Termination by Mechanical Damage (기계적 손상에 따른 6.6kV케이블 종단부의 전기적 특성)

  • Baek, Seung-Myeong;Choi, JIn-Wook;Kim, Sang-Hyun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1299_1300
    • /
    • 2009
  • We show results that examine about electrical properties of XLPE insulated 6.6kV cable termination by mechanical damage. The cable used to produce the cable termination is 6/10kV tray XLPE fire retardant electric cable (6/10kV TFR-CV $35SQMM{\times}1C$) which is domestically made. We apply force to XLPE insulator and made mechanical defect using knife. Defected samples go through the withstand voltage test according to the IEEE std. 48 test regulations and lighting impulse (hereunder, IMP) withstand voltage test regulations. Then the effects of the scars shown during the construction process on electric accidents at the end part are analyzed.

  • PDF

A Study on Zone-based Risk Analysis System using Real-time Data (실시간 데이터를 이용한 지역기반 위험분석 시스템에 관한 연구)

  • Oh, Jeong Seok;Bang, Hyo Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • Energy industry facilities can cause fatal damage for internal industry employee as well as external general people because handling various kinds of gas and harmful substance might be spread to large scale severe accident by fire, explosion, and toxic gas leakage. In order to prevent these accidents, quantification by damage effect on structure and human is tried by using quantitative risk assessment, but it is difficult to process instantly exceptional cases and requires knowledge of expert. This paper aims to minimize exceptional cases and knowledge of expert, and present risk with human perceptible. So, we designed and developed zone-base risk analysis system that can compute risk of zone in real time at that point using database and incremental model.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.