• Title/Summary/Keyword: Fire pipe

Search Result 184, Processing Time 0.021 seconds

A Study on Percent Agent in Pipe as a Criterion to Evaluate Limitations and Performance of Gaseous Fire Extinguishing Systems (가스계 소화설비의 제한사항 및 성능평가를 위한 배관 내 약제비율에 관한 연구)

  • Son, Bong-Sei;Kim, Hee-Woo
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This study aims to investigate, review, and summarize the definition, development, and applications of "percent agent in pipe", "percent of agent in pipe" which is used as a key factor in testing and evaluating the performance of gaseous fire extinguishing agents, including Halon 1301 and $CO_2$. This study also analyzes and compares the local and international standards on testing and evaluating the performance of gaseous fire extinguishing systems, as well as the results of system performance tests conducted as a part of performance evaluation and approval programs for gaseous fire extinguishing systems, especially, Korean Gaseous Fire Extinguishing System Performance Approval Program called KFI Approval. Percent agent in pipe was defined first in NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems, dating back to the 1970's. After the phaseout of Halon 1301 systems in 1994 in the developed countries, the percent agent in pipe has been widely used in Halon 1301 alternative clean agent fire extinguishing systems, both halocarbon clean agent systems and inert gas clean agent systems, as an essential criterion to assure the system design accuracy, determine the limitations and performance of a system, and to predict the system performance results accurately, especially, in association with their system flow calculations. Underwriters Laboratories has their own standards such as UL 2127 and 2166 applying percent agent in pipe in testing and evaluating the performance of clean agent fire extinguishing systems. As a part of a system performance test and approval program called KFI Approval System, Korea also has started to apply the percent agent in pipe as a key factor to test, evaluate, and approve the performance of gaseous fire extinguishing systems, including both high and low pressure $CO_2$ systems, from the early 2000's. This study outlines and summarizes the relevant UL and KFI standards and also describes the actual test resultant data, including the maximum percents of agent in pipe for gaseous fire extinguishing systems. As evidenced in lots of tests conducted as a part of the system performance test and approval programs like KFI Approval System, it has been proven that the percent agent in pipe may work as a key factor in testing, evaluating, and determining the limitations and performance of gaseous fire extinguishing systems, especially compared with the hydraulic flow calculations of computer design programs of gaseous fire extinguishing systems, and will remain as such in the future. As one thing to note, however, there are some difficulties in using the unified percent agent in pipe to determine the maximum lengths of pipe networks for gaseous fire extinguishing systems, because the varying definitions used by some of the flow calculations (not in accordance with NFPA 12A definition) make it impossible to do any direct comparison of pipe lengths based on percent agent in pipe.

An Experimental Study on Piping Feasibility of PE Compound Pipe for Fire Protection Service (PE 이종강관의 소방용 배관 적용성에 관한 실험적 연구)

  • Park, Jeong-Hwa;Oh, Cheon-Young;Kwark, Ji-Heon;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • In this study, to determine whether it is possible to apply Polyethylene (PE) compound pipe, which was developed to solve the problem caused by the corrosion of the fire protection piping currently in usein water based fire extinguishing systems, we performed an actual mockup fire test. Since no test standard was available related to the developed compound pipe, we compared and analyzed domestic and international technical materials and test standards and selected suitable fire test standards to evaluate the performance of the PE compound pipe. we applied two fire test standards to the PE compound pipe, viz. those for CPVC and metallic pipes, and conducted a total of 6 experiments to evaluate its performance. According to the results of the first and second fire tests based on the test standard for the CPVC pipe, neither the fitting nor the piping was damaged or deformed and no leakage was observed in the pressure test, which was performed for 5 minutes. For the fire test based on the metallic pipe test standard, a total of 4 experiments were conducted. The first two experiments were conducted to simulate the wet piping system. In the results of this fire test, neither leakage nor rupture was observed from the PE compound pipe and no damage was caused, such as the secession of the PE material. However, in the next two experiments, which simulated the dry system, the PE compound pipe suffered damage and rupture, including deformation before the fire fighting water was discharged. Therefore, we found that the piping performance of the PE compound pipe did not undergo any deterioration, including fusion, deformation, or damage, in the wet piping system simulated fire test.

Evaluation of the Reaction-to-fire Performance of Pipe Insulation Material using Small Room Test (룸코너 시험을 이용한 배관용 보온재의 난연성능 분석)

  • Lim, Ohk Kun;Nam, Dong-gun;Jang, Hyo-Yeon
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Reaction-to-fire performance of pipe insulation materials should be approved in accordance with KS standards prior to installing water-based suppression systems because several fire accidents are initiated from insulation materials around ceilings or concealed space. A small room test to evaluate the reaction-to-fire performance of the polyethylene foam and elastomeric pipe insulation materials was conducted according to ISO 20632. Different fire growth rate and heat release rate are observed depending on the materials and construction methods. In order to improve a fire safety, the reaction-to-fire performance of pipe insulation material needs to be subdivided with regard to the heat release rate and smoke generation. Furthermore, the characteristics of the applying space are also required to be considered. Subsidiary materials for installation process such as tape and adhesive are found to provide an adverse effect to maintain a fire safety.

A Study on the Strength Analyses of T-Branch Pipes (분기배관의 강도해석에 관한 연구)

  • Nam, Jun-Seok;SaKong, Seong-Ho;Baek, Chang-Sun;Lim, Kwang-Kyu;Jeong, Jae-Han;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.36-41
    • /
    • 2007
  • In this study, we determined TBP(T-branched pipe) would be available in Fire Safety Codes with strength analyses. A common FEM Program(ABAQUS) was used as analyses method, and the analyses results were confirmed by strength tests of the T-branch pipe. As a result, we concluded that the T-branch pipe can be used safely. Further more, we determined what kind of stainless steel pipe can be used in place of carbon steel pipe(KS D 3507). The stainless steel pipe name Is KS D 3576(stainless steel pipe) 10S, so they can be applied for piping in fire protection system.

A Study on the Fire Prevention Activities and Suppression Measures of Utility-Pipe Conduit (지하공동구 화재예방활동 및 진압대책에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Utility-Pipe Conduit is, Housing and city effectively accommodate what they absolutely need power, communications, gas, pipeline, water supply, drainage, energy facilities etc, according to expansion of urban infrastructure are derived, several ways to solve problems in, collection facilities in place are maintained and managed facility. If Utility-Pipe Conduit is damaged, as well as national security, because their impact on society as a whole, by introducing large vulnerability in the fire prevention activities and suppression measures and disaster for our situation by introducing measures, comprehensive analysis of the fire risk, it shall establish fire prevention activities and suppression through analysis of Utility-Pipe Conduit design, institutional issues, the problem of fire protection facilities, fire spread phenomenon etc. Because of Utility-Pipe Conduit is an enclosed place, so incomplete combustion due to lack of oxygen supply that there are problem such dark smoke, carbon monoxide etc, toxic combustion products and heat generation and visual impairment is an issue difficult to enter. As well as fire prevention activities, the fire In light of the particularity of the under ground than above ground fire, so this phenomenon is weak fire fighting that fire to become effective fire fighting tactics, basically it is necessary difficulty softening, non-burn softening and prevent combustion expansion of the cable is installed on the Utility-Pipe Conduit, having to considering the specificity of the response command system and relevant organizations to establish an on-site, Structural identification and other information gathering required to record of Response agencies, keep air conditioning system 24 hours and strengthening Virtual Total Training of Response agen

Consideration of Pressure-Rise and Water Hammer for Pipe System in Relation to Start-Up and Sudden Stop of the Pump (펌프 기동 및 정지에 따른 배관 압력상승과 수격작용 영향 고찰)

  • Heo, Min Woong;Min, Ji Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • In the fire protection system or fire fighting water supply system, the jockey pump is generally installed for the prevention of the pressure decrease of pipes, the frequent driving of the fire pump and protection the pipes from the water hammer. In this paper, the pressure-rise in fire fighting water distribution pipes in condition of pipe pressurization by the surge tank at the start-up and the sudden-stop of the fire pump without additional installation of jockey pump is considered by using simple formula calculations and the evaluation of water hammer occurrence in condition of pipe pressurization by the surge tank is included. As a result, the pressure-rise of pipes is less than the pipe design pressure at the condition of pump's start-up and sudden stop, and the possibility of water hammer occurrence is remarkably low due to pressurization of the pipes by the surge tank.

An Analysis on the Effect of Pressure System Installation on the Pipeline to Identify Pressurized Water and Self-inspection Ease in Apartment Building (아파트에 설치하는 옥내소화전 압력계 설치가 배관의 가압수 식별 및 자체점검 용이성 간의 영향 분석)

  • Son, Joo-Dal;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • This study analyzed how the installation of a pressure gauge in the indoor fire hydrant of an apartment building affected identifying pressurized water in the pipe, making it easier to conduct internal inspection on the fire suppression system, and ensuring reliability of fire suppression. The following are the study's results: First, identifying pressurized water in the indoor firefighting pipe had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that a higher level of identification of pressurized water in the indoor firefighting pipe had a positive impact on improving the installation and use of a pressure gauge in the indoor fire hydrant. Second, making it easier for the fire safety officer to inspect the fire suppression system had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This suggests that if it becomes easier for the apartment building's stakeholder to conduct internal inspection or the firefighting facility manager to carry out inspection on the fire suppression system, it would have a positive effect on the installation of a pressure gauge in the indoor fire hydrant. Finally, ensuring reliability in fire suppression had a positive effect on the installation of a pressure gauge in the indoor fire hydrant. This implies that if it becomes easier to identify pressurized water in the indoor firefighting pipe, for the fire safety officer to conduct internal inspection, or for the firefighting facility manager to carry out inspection in accordance with the fire suppression system's internal inspection requirements, it would increase reliability in fire suppression, making it more necessary to install a pressure gauge in the indoor fire hydrant.

A study on the Analyses of T-branch Pipe Forming using a Finite Element Method (유한요소법을 이용한 분기배관의 성형해석에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Lim, Kwang-Kyu;SaKong, Seong-Ho;So, Soo-Hyun;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.98-105
    • /
    • 2007
  • On this study, we verified the possibilities of making T-branch pipe forming with carbon steel pipes and stainless steel pipes used by common FEM Program(ABAQUS) which are widely used in the fire protection and building construction fields. In this kind of T-branch pipe forming works, in principle, the seamless pipe is used. If the pipe has the seam, the forming face must be the opposite side of the seam. The forming works are carried out by a truncated cone shaped plug. We found that the face slope and the length of plug are the most important factor in pipe forming. Based on the results of forming analyses, we proposed the minimum height and thickness of pipe branch forming.

A Study on the fire characteristic of pipe insulation film materials (배관 보온필름의 화재특성에 관한 연구)

  • Lee, Young-Sam;Lee, Jang-Won;Rie, Dong-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • This study was performed to test the combustive properties of the pipe insulation materials which are mainly used in the industries and buildings. Fire characteristic test of pipe insulation film according to the KS F ISO 5660-1 was performed. The experimental materials commonly used in the pipe insulation were used four kinds of films. Two kinds of 4 types of products that have the flame retardant performance and the other two types of them have no flame retardant performance. They were selected for fire characteristic test. The result of finding 25kW/$m^2$ radiation from the ignition was that flame retardant products were 140sec and the other one were 69sec in average of heat release rate(HRR). The result of flame retardant products in the 50kW/$m^2$ was 34sec and the other one were 15sec in average of HRR. However, the HRR of flame retardant products was much higher than the other one. Flame propagation test was conducted according to the KOFEIS 1001. The result of flame retardant products was that flame retardant products had a hold without fire spread after firing them. But the other one were completely fired after firing them. Therefore, I want to recommend that flame retardant products need to be used by the regulation to prevent or decrease a fire spread.

Comparison Analysis of Ready to Use Time Depending on The Type of Public Fire Hydrant of Fire-fighting Water Facility (소방용수시설의 공설소화전 종류에 따른 사용 준비시간 비교분석)

  • Jeon, Jai-In;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • The purpose of this study is to investigate the preparation time of fire-fighting water for public fire hydrants and ground, underground fire hydrants. The equipment preparation time for stage 1 was 20.50 seconds for ground type and 24.67 seconds for underground type. The reason for this difference in preparation time is that an underground fire hydrant requires additional standpipes to connect to the main conduit of Paru and the underground hydrant, which open the manhole cover. Water tank Maintenance joint with water hose male coupling of the second stage was similar to that of the ground type of 48.50 seconds and underground water tipe of 49.00 seconds. This is because the operation of connecting the fire hose to the maintenance tank of the water tank car is the same. In the third stage, the water pipe connection was 43 seconds for ground type and 174.33 seconds for underground type. The reason why the time for connecting the water pipe to the fire hydrant is large difference is that the underground fire hydrant is opened by opening the manhole cover, After connecting the stand pipe to the fire hydrant, the additional process of connecting the water pipe to the stand pipe is required, which is considered to have greatly increased the time required. The opening of Water Control Valve and spindle Valve in the fourth stage was 66.50 seconds for the ground type and 78.83 seconds for the underground type. This difference is due to the fact that the spindle of the ground fire hydrant is located on the main body and can be easily opened, but the underground type is located next to the main body under the manhole and requires additional time to connect the opening equipment.