• Title/Summary/Keyword: Fire intensity

Search Result 166, Processing Time 0.017 seconds

Determination of Thermoluminescence Properties of MgB4O7 Doped with Dy3+, La3+ and Ho3+ for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy3+, La3+ 그리고 Ho3+이 도핑된 MgB4O7의 열 발광 특성 분석)

  • Park, Jinu;Kim, Nakyung;Choi, Jiwoon;Koh, Jaehyuk;Chin, Hee Sik;Jung, Duck Hyeong;Shin, Byungha
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.9-13
    • /
    • 2022
  • Bullets flying with a light from the back are called "tracers". Tracers are ignited by the combustion gas of the propellant and emit bright light that allows the shooter to visually trace the flight path. Therefore, tracers mark the firing point for allies to assist shooters to hit target quickly and accurately. Conventional tracers are constructed with a mixture of an oxidizing agent, raw metal, and organic fuel. Upon ignition, the inside of the gun can be easily contaminated by the by-products, which can lead to firearm failure during long-term shooting. Moreover, there is a fire risk such as forest fires due to residual flames at impact site. Therefore, it is necessary to develop non-combustion type luminous material; however, this material must still use the heat generated from the propellant, so-called "thermoluminescence (TL)". This study aims to compare the TL emission of Dy3+, La3+ and Ho3+ doped MgB4O7 phosphors prepared by solid state reaction. The crystal structures of samples were determined by X-ray diffraction and matched with the standard pattern of MgB4O7. Luminescence of various doses (200 ~ 15,000 Gy) of gamma irradiated Dy3+, La3+ and Ho3+ (at different concentrations of 5, 10, 15 and 20 %) doped MgB4O7 were recorded using a luminance/color meter. The intensity of TL yellowish (CIE x = 0.401 ~ 0.486, y = 0.410 ~ 0.488) emission became stronger as the temperature increased and the total gamma-ray dose increased.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

District-Level Seismic Vulnerability Rating and Risk Level Based-Density Analysis of Buildings through Comparative Analysis of Machine Learning and Statistical Analysis Techniques in Seoul (머신러닝과 통계분석 기법의 비교분석을 통한 건물에 대한 서울시 구별 지진취약도 등급화 및 위험건물 밀도분석)

  • Sang-Bin Kim;Seong H. Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.29-39
    • /
    • 2023
  • In the recent period, there have been numerous earthquakes both domestically and internationally, and buildings in South Korea are particularly vulnerable to seismic design and earthquake damage. Therefore, the objective of this study is to discover an effective method for assessing the seismic vulnerability of buildings and conducting a density analysis of high-risk structures. The aim is to model this approach and validate it using data from pilot area(Seoul). To achieve this, two modeling techniques were employed, of which the predictive accuracy of the statistical analysis technique was 87%. Among the machine learning techniques, Random Forest Model exhibited the highest predictive accuracy, and the accuracy of the model on the Test Set was determined to be 97.1%. As a result of the analysis, the district rating revealed that Gwangjin-gu and Songpa-gu were relatively at higher risk, and the density analysis of at-risk buildings predicted that Seocho-gu, Gwanak-gu, and Gangseo-gu were relatively at higher risk. Finally, the result of the statistical analysis technique was predicted as more dangerous than those of the machine learning technique. However, considering that about 18.9% of the buildings in Seoul are designed to withstand the Seismic intensity of 6.5 (MMI), which is the standard for seismic-resistant design in South Korea, the result of the machine learning technique was predicted to be more accurate. The current research is limited in that it only considers buildings without taking into account factors such as population density, police stations, and fire stations. Considering these limitations in future studies would lead to more comprehensive and valuable research.

Influences of Environmental Gradients on the Patterns of Vegetation Structure and Tree Age Distribution in the East Side of Cascade Range, Washington, USA (워싱턴주(州) 케스케이드산맥(山脈) 동(東)쪽 산림(山林)에서 환경구배(環境勾配)가 식생구조(植生構造)와 연령분포(年齡分布)에 미치는 영향(影響))

  • Woo, Su Young;Lee, Kyung Joon;Lee, Sang Don
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.107-119
    • /
    • 1996
  • To understand vegetation changes along environmental gradients in the natural forests in the east side of the Cascade Range in Washington state, USA, line transects were used to sample six different forest environments in the Wenatchee National Forest in the north-facing and south-facing sites at 975, 1280 and 1700m elevation. Data were analyzed using ordination by detranded correspondence analysis. Pseudotsuga menziesii was found as one of the dominant species on all the six sites regardless of elevation or aspect, while Pinus ponderosa was dominant on south slopes only. Abies grandis and A. lasiocarpa were dominant species on north slopes at elevations of 1280 and 1700m, respectively. Moisture, as it related to aspect, was identified as one of the most important environmental gradients for explaining the variation of vegetation types. On north-facing slopes, compared to south-facing slopes, where moisture was not as limiting and canopies could grow denser, probably, elevation or competitive interaction was more important. Species diversity tended to decrease with increasing environmental severity, with south slopes having less diversity than north slopes due to extended water stress and harsher temperature extremes on south slopes. The age structure on north-facing and south-facing slopes was different. Light intensity, moisture and climate were different between these two slopes. Large scale disturbances(e.g., big fire or insects) were major causes in changing age structure. Younger trees showed a closer relationship between size and age than adult trees. DBH values of shade intolerant species in south-facing slope were bigger than those of north-facing slope, which suggested that aspect of stands be the most important factor for age and size.

  • PDF

Removal Efficiency of the Deodorization Equipment and Characteristics of Malodor during the Process in Co-treatment of Sewage and Food Waste of Su-young Wastewater Treatment Plant in Busan (부산수영하수처리장 하수와 음식물쓰레기 병합처리 시 공정별 악취특성 및 후처리시설 효율평가)

  • Lee, Hyung-Don;Kang, Dae-Jong;Lee, Min-Ho;Kang, Dong-Hyo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.379-389
    • /
    • 2012
  • Environmental issues are being paid more attention due to income growth, urban overcrowding, and population growth in Korea. Among the various environmental problems, odor damage is the one of the serious factors. To take example for food waste combination treatment in Su-young wastewater treatment plant in Busan, many complaints occurred because this plant locate around residential areas. The purpose of this work is not only to analyze odorous elements and their contributions but also to evaluate odor quotient (OQ), sum of odor quotient (SOQ), and treatment efficiency of bio-filter. The results of dilution sensory test of complex odor, grinder, leachate, hopper indicated higher order complex odors happen in July and August. The main odorous elements consisted of hydrogen sulfide, ammonia, methly mercaptan and acetaldehyde, which were analyzed by instrumental detection method, and methyl mercaptan was exceeded over 3,571 times of threshold. In addition, result of contribution of odor was methyl mercaptan (49.95 to 59.08%), hydrogen sulfide (20.43 to 29.27%), trimethylamine (8.82 to 13.42%) and acetaldehyde (9.17 to 11.35%). Other facilities were compared with the contribution of the odor using OQ and SOQ during the process. Sulfur compounds, acetaldehyde, and trimethylamine are high contribution of odor using OQ as well as odor intensity of grinding process is highest. As a result, sulfur compounds (e.g., methyl mercaptan and hydrogen sulfide) are highest for OQ and SOQ of grinding process is highest as 7,067. The removal efficiency of deodorization equipment was more than 90.00% in ammonia and amines, but the average efficiency of sulfur compounds was 53.51%. Thus, this facility is more higher contribution of acetaldehyde and trimethylamine than other treatment facilities. And food waste treatment in environmental area needs to consider appropriate capacity and refers to other bio-filter operating conditions.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF