• Title/Summary/Keyword: Fire extinguishing

Search Result 393, Processing Time 0.025 seconds

Effectiveness Analysis of Fire Extinguishing Agents for Metal Waste Fires (금속화재 대응 시 간이소화용구 및 약제의 소화 효과성 분석)

  • Jin-Suk Kwon;Su-Young Kim;Tae-Sun Kim;Tae-Hee Park;Tae-Dong Kim;Min-Young Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.644-655
    • /
    • 2023
  • Purpose: Metal fires occur in metal handling, processing, waste storage plants, etc. It is difficult for firefighters to extinguish metal fires, and it takes a long time, so caution is needed in fire suppression. Method: In this study, current statistics and problems of metal fires were introduced, and then the effectiveness was verified by experiments with using fire extinguishing agents used in Korea. Comparative suppression experiments of 5 different fire extinguishing agents for burning powders of 99.9% magnesium over 150 ㎛ were performed following the metal powder type test method of Class D fire in ISO 7165. Result: 5 fire extinguishing agents are the power types of dry sands and expanded vermiculites most commonly used in Korea, the certified class D fire extinguisher used abroad, and ochers requiring verification, and the liquid silica gel. Conclusion: The results of experiments showed expanded vermiculites were the best metal fire extinguishing agent considering effectiveness, convenience of use, and economical feasibility.

The Report on Test Results of CO Fire Extinguishing System ($CO_2$ 소화설비 구성부품 성능시험보고)

  • Kim, Gi-Ok;Lee, Chan-Ju;An, Byeong-Ho
    • Fire Protection Technology
    • /
    • s.14
    • /
    • pp.5-12
    • /
    • 1993
  • This report is explained about test results of carbon dioxide extinguiching system components and pack-age type system (Kits) for automatic fire extinguishing system. A carbon dioxide system may be used to protect one or more hazards or hazards by menas of directional valves. Package system shall be installed to protect hazards within the limitations. The testing program was progressed by three items, external oppearance test, performance test and Total Flooding Fire Extinguishing System test. The object of this report is present the problem which apperar from the analysis of test results.

  • PDF

A Study on the Development of Fire Extinguishing System for Machinery Spaces of a Small craft (무인기관실에 효과적인 자동소화장치개발 관한 연구)

  • Lee, Chan-Jea;Kang, Dae-Sun;Kim, Dong-Suk;Kwark, Ji-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small boats was performed. Fire tests were conducted inside the compartments having volumes 2.9, 4.5, $8m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel, In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

Influence of the Nozzle Contraction Angles of Gaseous Extinguishing Systems on Discharge Noise (가스계 소화시스템 노즐 수축각이 방출소음에 미치는 영향)

  • Kim, Yo-Hwan;Yoo, Han-Sol;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.77-82
    • /
    • 2019
  • Fire extinguishing systems are essential equipment in all indoor facilities to address unexpected fire scenarios, and appropriate fire extinguishing agent should be used depending on the place and object to protect. Among these, gaseous fire-extinguishing systems are used to protect electronic equipment. Therefore, inert gases that do not undergo chemical reactions are used mainly in those systems. On the other hand, recently, owing to the high integration of electronic equipment, there are some cases, in which large noise generated from gaseous systems damage the electronic equipment. In this study, numerical analysis of the discharge noise with various nozzle contraction angles was carried out to improve the gas fire extinguishing system. Numerical analysis was carried out using ANSYS FLUENT ver 18.1. The causes of the noise were elucidated using the swirl distribution. The noise level of the modified model was reduced by approximately 6 dB compared to the reference model, which is similar to the result of a previous study, confirming the validity of the method.

Development Plan for the Consequence Management in Response to Large-Scale Wildfire Disasters Using Air Force Transport Aircraft (C-130) (공군 수송기(C-130)를 활용한 대형산불 재난 대응 시 사후관리(CM) 발전방안)

  • Sangduk Kim;Minki Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.232-243
    • /
    • 2024
  • Purpose: Recently, large-scale forest fires caused by climate change, natural disasters, and human factors have been increasing every year in the East Coast and Taebaek Mountains region. Although forest fire extinguishing using helicopters is currently increasing, the need to introduce air force transport aircraft has continued to be raised due to the importance of early fire extinguishment to respond to large forest fires and the difficulty of extinguishing forest fires between sheep. This study seeks to present a plan for developing a post-fire management system for several aspects - achieving operational objectives, overcoming the operating environment, selecting a staging area, and efficient operation measures - to efficiently perform forest fire extinguishing missions using Air Force transport aircraft. Method: Based on literature research on forest fire extinguishing, forest fire extinguishing experiments using fixed-wing aircraft, and the operation status and operation method of forest fire extinguishing helicopters, the pros and cons of helicopter operation and the effects of large forest fire extinguishing using a large transport aircraft (C-130) Analyze the effectiveness of operation through analysis. Results: When extinguishing a large forest fire, an effective CM (Consequence Management) application plan was derived, including effective operation, control, command system, dispatch request, and forest fire extinguishment when integrating helicopter and fixed-wing aircraft (C-130). Conclusion: The application of the concept of CM (Consequence Management) is partially applied to some areas of chemical, biological, and radiological (CBRNE) protection in Korea, but efficient operation, control, and command systems are established when integrated operation of helicopters and large aircraft (C-130) in forest fire extinguishment. the concept of CM (Consequence Management), which is operated in advanced countries, was applied for safety management, dispatch requests, and forest fire extinguishing, thereby contributing to the establishment of a more advanced disaster and post-disaster management system.

A Study on the auto fire-extinguishing system in the subway train (지하철 전동차내 자동소화 시스템 연구)

  • Lee Tae-Shik;Moon Young-Hyun;Hong Hyo-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.168-173
    • /
    • 2004
  • This research shows the method about the auto extinguishing system construction for the subway train's safety operation. The safety system is the total auto extinguishing system which it is able to overcome the emergency situation, to see fast using the sensing system, to interface using the communication system, finally to extinguish the large-scale fire happened. The system model is the total disaster mitigation system model preventing the arson or terror. and to apply a method of the fire extinguishing system using reinforced fire extinguishing agency in the world first. It is to use the subway train and the railroad train which is prevented and mitigated the large-scale demage the same as the arson and the terror.

  • PDF

A Study On The Development Of An Automatic Fire Extinguishing System For The Engine Compartment Use Of Automobiles (자동차 엔진 화재용 자동 소화 시스템 개발에 관한 연구)

  • Lim, Sung-Muk;Jung, Ki-Chang;Kim, Hong;Kang, Young-Goo;Lee, Chang-Sub
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.57-61
    • /
    • 1996
  • Our goal was to make a cost-effective automatic fire extinguishing system for the engine compartment use of automobiles. We designed this system for the engine compartment. This system consists of 1)foam extinguisher, 2)four nozzles, 3)a pipe arrangement, and 4)an extinguishing device which is equipped with a glass bulb as detector. First and foremost, the extinguishing device was carefully designed to keep the system cost to a minimum. Second, a AFFF foam extinguisher was used because no other fire-fighting agents proved effective against fire in the engine compartment. The AFFF(Aqueous Film Forming Foam) agent which was used in the extinguisher is the 3M company's Light Water. We sought, however, to make other foams by using Halon 1301 and Halon alternatives such as HCFC Blend A, HFC-227ea. We selected these alternatives instead of air in order to raise the expansion ratio of the AFFF agent. By these means we discovered that it is possible to increase the expansion ration of the AFFF agent up to 44:1. We then demonstrated that our automatic fire extinguishing system is the most effective and lowest cost-system yet devised for passenger cars.

  • PDF

Application of a Turbojet Engine for Fire Extinguishing

  • Slitenko, A.F.;Kim, SooYong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.62-69
    • /
    • 2000
  • Present study deals with performance analysis of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF

EXPERIMENTAL STUDY ON PEAK CONCENTRATIONS OF HALON ALTERNATIVES AT ELEVATED TEMPERATURE

  • Ohtani, Hideo;Washimi, Akiko;Uehara, Yoichi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.550-557
    • /
    • 1997
  • Production of so-called Halon fire extinguishing agents has been prohibited since January 1994 because of their ozone depletion potential, To replace them, several hydrofluorocarbons and fluorocarbons have been developed and utilized. A number of studies on flame extinguishing concentrations and flammability peak concentrations of them have been done. Although there was enough information for practical purpose, more knowledge on fire extinguishing characteristics of them should be attained for efficient use of them. In this study, peak concentrations of methane/air mixtures with gaseous halogenated hydrocarbons were measured at elevated temperature, because the former studies were done at room temperature and temperature of a fire room can be higher than usual. Measurement was done at $200^{\circ}C$, because measuring system could not endure higher temperature. This study revealed that peak concentrations of halogenated hydrocarbons differed little at elevated temperature. The halogenated hydrocarbons have almost the same fire extinguishing ability as Halon 1301.

  • PDF

A Study on Improving Extinguishing Capacity of Mobile Water Mist Equipment (이동식 미분무수 소화장비의 소화능력 향상에 관한 연구)

  • Kong, Ha-Sung;Kim, Jong-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • This research has so far found out problems including the second damage of extinguishant and the short time of emission when using the existing dry chemical extinguisher and gas type extinguisher, and impossibility of constant extinguishing due to the inability of recharge at the field. To solve such problems, a mobile water mist system was developed and used. However, it is judged that more improved mobile water mist system is necessary because the force of the fire changed diversely and remote villages in mountains or islands where the force of fire extinguishing is short or delayed, require high capacity of fire extinguishing. Therefore a new equipment was developed and tested focusing on the improvement of extinguishing capacity and the performance of extinguishing was found out to be improved, compared to the existing mobile water mist system. It also showed a superior extinguishing capacity to dry chemical extinguisher or gas type extinguisher. Afterward an additional research is required of simplification of equipment, price cutting and the development of additive to enable high performance even with just small extinguishant.