• Title/Summary/Keyword: Fire evacuation assessment

Search Result 66, Processing Time 0.024 seconds

Evaluation of Evacuation Safety in University Libraries Based on Pathfinder

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2024
  • In recent years, the frequent occurrence of fire accidents in university libraries has posed significant threats to the safety of students' lives and property, alongside negative social impacts. Accurately analyzing the factors affecting evacuation during library fires and proposing optimized measures for safe evacuation is thus crucial. This paper utilizes a specific university library as a case study, simulating fire evacuation scenarios using the Pathfinder software, to assess and validate evacuation strategies and propose relevant optimizations. Pathfinder, developed by Thunderhead Engineering in the United States, is an intuitive and straightforward personnel emergency evacuation assessment system, offering advanced visualization interfaces and 3D animation effects. This study aims to construct evacuation models and perform simulation analysis for the selected university library using Pathfinder. The library's structural layout, people flow characteristics, and the nature of fire and smoke spread are considered in the analysis. Additionally, evacuation scenarios involving different fire outbreak locations and the status of emergency exits are examined. The findings underscore the importance of effective evacuation in fire situations, highlighting how environmental conditions, individual characteristics, and behavioral patterns significantly influence evacuation efficiency. Through these investigations, the study enhances understanding and optimization of evacuation strategies in fire scenarios, thereby improving safety and efficiency. The research not only provides concrete and practical guidelines for building design, management, and emergency response planning in libraries but also offers valuable insights for the design and management of effective evacuation systems in buildings, crucial for ensuring occupant safety and minimizing loss of life in potential hazard situations

A Study on Fire Evacuation Guidance System using Indoor Spatial Information from Beacon (실내공간정보를 활용한 비콘기반 화재위험감지와 재실자 피난지원 서비스에 관한 연구)

  • Lee, Sun Min;Kim, Tae-Kyung;Hong, Sung-Moon;Kim, Ju-hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The purpose of this study is to present the possibility of adopting beacons to implement the fire evacuation guidance system in order to reduce the evacuation time for a fire in complex buildings. A beacon-based evacuation system can quickly detect a fire's origin, optimal path of evacuation involved with the exits and the location of evacuees using information collected by the proposed system. The assessment is conducted by integrating different scenario models including fire simulation. Based on the research result, beacon is an effective tool to warn potential hazards or to provide early detection and a safe escape.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

A Study on the Evacuation Performance Review for the Office Buildings (업무용 빌딩의 피난 성능 검토에 관한 연구)

  • 오혁진;백승태;김우석;이수경
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • In this study, it reviewed about evacuation performance of a specified Office Building. assessment tools is FAST 3.1.7 (Estimation of Flash Over, Estimation of Layer Height Down Flow Time), SIMULEX 32-bit (Estimation of Evacuation Time), JASMINE 3.25d. (Smoke Flow Assessment of a specified time) Result from Fire Scenario # 1, Flash Over is not generated in Compartment. Evacuation Time is estimated 25.2 sec by SIMULEX 32-bit. layer height until this time (25.2 sec) was estimated 2.4 m by FAST 3.1.7. After ignition until this time (25.2 sec), smoke was not release to the a corridor. In consequence, We concluded that people in building are completing the safe evacuation without the damage of smoke. Result from Fire Scenario # 1, Flash Over generated 6 min 33.2 sec in Compartment. Evacuation Time is estimated 1 min 25.5 sec by SIMULEX 32-bit. layer height down flow time is 1 min 40.8 sec by FAST 3.1.7 and 5 min 23 sec by theoretical calculation. Also, total building evacuation time was estimated 2 min 26.6 sec. After ignition until this time (2 min 26.6 sec), smoke released to the a corridor but it amount was few little. Therefore, generated smoke in compartment not effected to the people in buildings.

A COMPUTER SIMULATION MODEL AS A MEANS OF EMERGENCY EVACUATION TRAINING FOR CONSTRUCTION PROJECTS

  • Chung-Suk Cho;Dong-Cheol Shin
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.864-868
    • /
    • 2009
  • Fire safety management on any construction site should start with recognizing fire risks in the workplace, understanding the extent of the risks, and proper assessment of the controls necessary to reduce the risks. However, the most important step to prevent fire-related accidents on jobsites is the constant review and monitoring of processes and controls by all individuals involved. This study was conducted to analyze the effectiveness of using computer simulation as an addition to maps or floor plans in safety training and management. Simulex was used on a real project to model various egress routes and to identify potential problem areas of the evacuation strategy. This study highlights the efficacy of simulated emergency evacuation as a training tool that visually shows constantly altering means of egress.

  • PDF

A Study on Safety Assessment of the Evacuation at the Large-scale Amusement Facilities (대규모 위락시설의 피난안전성능 평가에 관한 연구)

  • Park, Bong-Rae;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.165-173
    • /
    • 2009
  • As the Performance Based Fire Protection Design is legislated, studies on a fire and evacuation are actively in progress. The Performance Based Fire Protection Design should be developed toward enlarging the Life safety. In addition, the Performance Based Fire Protection Design shall not merely review the aspects of fire fighting but it shall also include regulations pertaining to evacuation stipulated in laws and regulations for buildings. This study performed an evacuation time prediction based on OO Night Club, one of the multiplex use facilities located in Gwang-ju Metropolitan City in order to suggest as a referential data for the Performance Based Fire Protection Design implementation. To do this, I investigated domestic and foreign regulations and research papers related to evacuation and went to visit the actual site and collected materials. The collected data was then used as ones to input in Simulex, an evacuation program to measure evacuation time. The collected data was then used as data to input in Simulex, an evacuation program to measure evacuation time. Through this particular research and results, the study was able to suggest a few concerning areas.

A Study on PBD case of Evacuation in Japan for PBD Approach of Korea. (국내 PBD 기술의 정립을 위한 해외 성능적 피난안전설계사례에 관한 조사)

  • Kim, Dong-Eun;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.322-327
    • /
    • 2008
  • Fire safety provisions have to be determined through Performance -based design in many project. There is a need for quick estimation of evacuation time for scenario analysis in hazard assessment. The key equations on estimating evacuation time have to be known. In Japan There are many experience of PBD according to the Architectural law. It is the aim of this study to investigate the PBD case of Evacuation in Japan for PBD Approach of Korea.

  • PDF

Development and Application of Evacuation and Fatalities Assessment Program (대피 및 인명피해 평가 프로그램 개발 및 적용사례)

  • Yoon, Sung-Wook;Rie, Dong-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Evacuation and Fatalities Simulation is one of the core technologies for performance based design. Recently, developed programs in foreign countries have limitations such as simple fatality calculation and coarse visual interface. This study developed an advanced evaluation program for evacuation and fatalities to overcome limitations of existing programs and improve various applications, i.e., an evacuation algorithm using elevators as well as evacuation stairs. In addition, the evaluation program can let users make a decision of fatalities from fire by coupling with FDS (Fire Dynamics Simulator) from NIST and realizes three-dimensional virtual space using a graphic module.

Assessment of Fire Evacuation Safety for Building Construction (건축물 건설공사시 화재피난안전성 평가에 관한 연구)

  • Jeong, Myeong-Jin;Lee, Myeong-Gu;Ham, Eun-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.119-124
    • /
    • 2014
  • Recently buildings are constructed in larger and higher scales and becoming more complex. However from small to large scale buildings and on construction sites there still are fire safety accidents that occur continuously. Therefore this study is aimed to assess of evacuation safety for building construction by use of simulation. On this study, the evacuation times required were estimated for the permissible evacuation times in cases. Fire safety management plans were suggested for building construction.

A Study on Comparison of Life Safety Assessment Results according to Three Coupling Methods of Fire and Evacuation Simulation (화재·피난시뮬레이션의 커플링방식별 인명안전성평가 결과 비교에 관한 연구)

  • Koo, Hyun-Mo;Oh, Ryun-Seok;An, Sung-Ho;Hwang, Chul-Hong;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.121-129
    • /
    • 2019
  • In Korea, life safety assessment through simulation are mandatory in performance-based design. Generally, there are three types of methods for simulation-based life safety assessments: the non-coupling method that compares available safe egress time (ASET) and required safe egress time (RSET) at a specific point through conducting fire and assessment simulations independently; the semi-coupling method that compares fire and evacuation simulation results by overlaying the result screens; and the coupling method that compares the results of fire effect simulation to an evacuation simulation. Of these methods, all designers in South Korea have used the only non-coupling method. In the non-coupling method, it is important to determine the location of a specific point to compare ASET and RSET. However, without any defined regulation, setting the location is determined based on the designer's experience and knowledge. The number of specific locations and the locations themselves differ with each designer, which can produce contrasting results in a life safety assessment. Therefore, this study conducted a life safety assessment based on the three methods (non-coupling, semi-coupling and coupling) and compared each of the results. Furthermore this study suggests a improvement way in particular for the computer simulation.