• Title/Summary/Keyword: Fire engine Travel time

Search Result 2, Processing Time 0.02 seconds

Development of Fire Engine Travel Time Estimation Model for Securing Golden Time (골든타임 확보를 위한 소방차 통행시간 예측모형 개발)

  • Jang, Ki-hun;Cho, Seong-Beom;Cho, Yong-Sung;Son, Seung-neo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.1-13
    • /
    • 2020
  • In the event of fire, it is necessary to put out the fire within a golden time to minimize personal and property damages. To this end, it is necessary for fire engines to arrive at the site quickly. This study established a fire engine travel time estimation model to secure the golden time by identifying road and environmental factors that influence fire engine travel time in the case of fire by examining data on fire occurrence with GIS DB. The study model for the estimation of fire engine travel time (model 1) covers variables by applying correlation analysis and regression analysis with dummy variables and predicts travel time for different types of places where fire may occur (models 2, 3, 4). Analysis results showed that 17 siginificant independent variables are derived in model 1 and the fire engine travel time differs depending on the types of places where fire occurs. Key variables(travel distance, number of lane, type of road) that are included commonly in the 4 models were identified. Variables identified in this study can be utilized as indicators for research related to travel time of emergency vehicles and contribute to securing the golden time for emergency vehicles.

A Study on Ship Evacuation Safety Consequent on the Size and Sort of Fire (화재의 크기와 종류에 따른 선박 피난 안전 연구)

  • KIM, Won-Ouk;KIM, Dae-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1358-1364
    • /
    • 2016
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crewmen are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. According to the ship fire survey, about 50% of the total fire accidents occurred at an engine room, and the main fire origin was analyzed to be oil. In addition, ship fire breaks out in the order of baggage racks and living quarter. In short, the survey indicates that all sorts of fires belonging to A, B, C and D-class have occurred. This study, targeting an actual passenger ship 'A', found the response time to evacuation, during which the people on board a ship recognize the outbreak of fire, and act, and the travel time for evacuation which is the actual travel time. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of passengers and crew based on the collected simulation data by fire size and sort. As a result of the analysis, it was found that when examining the only actual evacuation movement time excepting the response time to evacuation, people are safe by completing evacuation before the effective evacuation time only in case fire size is 100Kw among all sorts of fires. In other words, in case of the outbreak of fire more than 1 MW, it was found to fail to meet evacuation safety regardless of fire size.