• Title/Summary/Keyword: Fire emissions

Search Result 73, Processing Time 0.024 seconds

Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

  • Kibet, Joshua;Bosire, Josephate;Kinyanjui, Thomas;Lang'at, Moses;Rono, Nicholas
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.113-121
    • /
    • 2017
  • In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

PM Management Methods Considering Condensable PM Emissions from Stationary Sources in Seoul and Incheon (고정오염원의 응축성 먼지 배출량을 고려한 서울과 인천의 먼지 관리방안)

  • Lee, Im Hack;Choi, Doo Sung;Ko, Myeong Jin;Park, Young-Kwon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2017
  • In this study, the new particulate matter emissions considering condensable PM (CPM) of stationary pollutant sources were calculated to modify the CAPSS emissions based on only filterable PMs in Seoul and Incheon. When the new calculated emissions were compared to the existing filterable PM based emissions of local governments, different contribution patterns of emission sources were found. For example, the proportion of mobile sources was high when the filterable PM was considered; however, the contribution of non-industrial sources was dominant in Seoul when the emissions of CPM were considered. Also, the proportion of energy industrial combustion and manufacturing combustion sources was significant in Incheon when CPM emissions considered. Therefore, it seems to be much desirable to consider CPM emissions for determining adequate locations of collective energy facilities and manufacturing combustion facilities in the future. In addition, CPM should be considered to solve the dust problem nationwide. The emission analysis, diagnosis, prediction and countermeasures using CPM emissions should be appropriately performed.

A Study on the Emissions of CO2/non-CO2 for the Crown Layer and Surface Layer of Pine Trees (소나무류 수관층 및 지표층의 CO2/non-CO2 배출량 분석 연구)

  • Park, Young Ju;Lee, Hae Pyeong;Baek, Chang Sun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • In this study, we carried out the emissions analysis of CO and $non-CO_2$ for the age-classes of various pine trees(Pinus koraiensis, Pinus densiflora, Pinus rigida Mill., Pinus thunbergii Parl.) to estimate of emission factors of the crown layer and surface layer in the forest fire. We used the thermal characteristic analyzer cone heater and NDIR analyzer in order to measure amount of emission. As a result, the major emissions of Pinus koraiensis were $CO_2$ and $CH_4$ and that of Pinus thunbergii Parl. was only CO. The major emissions of the most of pine trees were NO and $N_2O$. The $CO_2$ emission of Pinus thunbergii Parl. was the highest about as $7.26{\times}10^{-2}{\sim}1.63{\times}10^{-1}g$ and next came Pinus densiflora, Pinus koraiensis, Pinus rigida Mill.. And the CO emission of Pinus thunbergii Parl. was about $5.14{\times}10^{-3}{\sim}6.58{\times}10^{-3}g$ and followed by Pinus densiflora, Pinus koraiensis, Pinus rigida Mill.. The emissions of $CH_4$, NO, and $N_2O$ showed small differences between species and the emission of $CH_4$ was $8.37{\times}10^{-5}{\sim}2.55{\times}10^{-4}g$, and NO was $6.65{\times}10^{-5}{\sim}2.0{\times}10^{-4}g$ and $N_2O$ was $1.42{\times}10^{-4}{\sim}2.09{\times}10^{-3}g$ in all species. Particularly, the emission of Pinus thunbergii Parl. was the highest in all pine trees except $CH_4$.

A Study on Analysis of Greenhouse Gas Emissions from Forest Fires Depending on Region and Altitude (지역 및 고도별 산불로부터 온실가스 배출량 분석 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • In this study we analyzed carbon emissions of leaves of a Pinus densiflora which is vulnerable to a forest fire using the cone calorimeter in order to analyze greenhouse gas emissions from forest fires depending on region and altitude. Fuels were collected from 9 regions[Hongcheon(Gangwon-do), Chungsong(Gyeongbuk-do), Yanhpyeong (Gyeonggi-do), Jecheon(Chungchongbuk-do), Gongju(Chungcheongnam-do), Wuju(Jeollabuk-do), Youngam(Jeollanam-do), Busan and Jeju-do)] and 9 altitudes(80 m, 450 m, 900 m, 1000 m, 1100 m, 1200 m, 1300 m, 1400 m and 1500 m) and then, carbon dioxide and carbon monoxide emissions contained in a weight of 50 g of fuel were analyzed. According to the results, there were differences in carbon emissions by regional groups, as the average carbon dioxide and carbon monoxide emissions in 9 regions were nearly 43.5929 g to 52.8868 g, and 0.8842 g to 3.6422 g, respectively. Busan and Jecheon had relatively higher carbon dioxide emissions and especially, Busan had 1.23 times higher carbon dioxide emissions than Jeju-do. Also, Gongju, Chungcheongnamo Province and Busan had relatively higher carbon monoxide emissions and especially, Gongju and Pusan had relatively higher carbon monoxide emissions and especially, Gongju had 4.12 higher carbon monoxide emissions than Hongcheon. In addition, there were differences in carbon emissions too depending on altitude, since carbon dioxide and carbon monoxide emissions in 9 altitudes were respectively, 40.7015 g to 68.9297 g and 1.3923 g to 12.2918 g. At the altitude of 80m, carbon dioxide and carbon monoxide emissions were respectively, 68.9297 g and 12.2918 g, and at the altitude of 450m, carbon dioxide and carbon monoxide emissions were respectively, 65.5115 g and 11.2497 g. These results show that pine trees at the lower altitude discharge relatively more carbon. It is considered that this analysis on carbon emissions depending on region and altitude can be effectively used for predicting greenhouse gas emissions and establishing statistical data from forest fires in each region and altitude.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF

Analysis of Carbon Emissions from Combustion of Three Arbor in Youngdong Area (영동지역 교목 3수종 생엽의 연소에 따른 탄소배출량 분석)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.210-215
    • /
    • 2010
  • In this study, when the forest fire occurred, in order to estimate greenhouse gas emissions, tree glow in Gangwon Youndong area, Juglans mandshurica, Alnus japonica, Acer palmatum of carbon dioxide and carbon monoxide emissions were about. Water content were measured before the experiment, Juglans mandshurica 196.24%, Alnus japonica 169.17% Acer palmatum 210.10% moisture content showed a big difference, Living leaves of Acer palmatum were a lot of moisture. Also, 50g weight of carbon dioxide on the Juglans mandshurica 53.3644g, Alnus japonica 49.4256g, was released about Acer palmatum 51.3394g, Juglans mandshurica living leaves were the most carbon dioxide emissions. Carbon monoxide emissions result, About weight 50g Juglans mandshurica 1.5329g, Alnus japonica 1.7189g, 2.5002g about Acer palmatum was released, Acer palmatum living leaves were the most carbon monoxide emissions.

Analysis of Air Quality and the Management Plan for Exposure to Hazardous Substances in the Garage of a Fire Station (소방청사 차고지 공기질 분석 및 유해물질 노출 관리 방안)

  • Park, Je-Seop;Han, Dong-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.394-404
    • /
    • 2020
  • Objectives: The aims of this study are to derive the characteristics of diesel exhaust gas emissions generated during vehicle checking in the garage of fire stations and of the related improvement plans for proper air quality management. Methods: The researcher measured changes in the air quality inside garages according to the operating conditions of the exhaust facility and before and after vehicle checking at three fire stations. Results: During the checking of fire engines, a large volume of hazardous substances exceeding management standards were generated, and improvement of the discharge facilities was required for proper air quality management. Conclusions: It is necessary to study the hazard evaluation of firefighters' exposure to exhaust gas, to operate exhaust gas ventilation facilities, and to prepare technical standards for proper indoor air quality management.

A Comparative Analysis of Domestic and Foreign Standards to Improve the Performance of Zone Smoke Control System (거실 제연설비 성능 개선을 위한 국내·외 기준 비교 분석에 관한 연구)

  • Huh, Ye-Rim;Kim, Yoon-Seong;Kim, Hye-won;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.83-84
    • /
    • 2022
  • In Korea, smoke control measures through NFSC 501 are proposed to reduce human casualties caused by smoke in the event of a fire. However, as a result of investigating and analyzing domestic and foreign standards, it was found that domestic regulations do not set fire source, but simply set smoke emissions by floor area or height of smoke boundary. Foreign regulations set fire source. Therefore, it is judged that it is necessary to review whether the current domestic regulations can be applied in the event of an actual building fire. So, this paper aims to identify the differences in domestic and foreign standards through investigation and analysis of related standards for fire zone smoke control system in each country and use them as basic data to improve the performance of zone smoke control system.

  • PDF