• Title/Summary/Keyword: Fire dynamic simulator

Search Result 50, Processing Time 0.024 seconds

FIRE DYNAMIC SIMULATOR WITH MARKER PARTICLES (표시입자가 적용된 FDS 코드 개발)

  • Choi, C.B.;Jang, Y.J.;Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.55-63
    • /
    • 2011
  • In this study, Fire Dynamic Simulator (FDS) has been improved with the implementation of marker particles. Convectional FDS is able to implement only two curved geometries, namely, circular cylinders and spheres. The introduction of marker particles made it possible to implement arbitrarily curved objects. Moreover, an algorithm that extracts the marker particle information from a model designed by AutoCAD was developed. With the present implementation, applicability of FDS is greatly enhanced, beneficial to both academia and industry.

A Numerical Modeling of Smoke Behavior and Detection for Fire Developed in International Space Station (국제우주정거장 내부 화재시 연기거동 및 감지특성에 관한 수치 모델링)

  • Park, Seul-Hyun;Lee, Joo-Hee;Kim, Youn-Kyu;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.51-56
    • /
    • 2012
  • The onset of fire on the International Space Station (ISS) is a critical problem that can threaten the life of crew members onboard and thus instantaneous fire detection and extinguishment technology has been considered as one of the most important aspects in the ISS operation. In the present study, a numerical analysis was performed to better understanding of the characteristics of smoke behaviors and detection in a pressurized module of the ISS using the NIST Fire Dynamic Simulator (FDS). Numerical results indicate that the smoke flow patterns under zero-gravity condition are clearly different from those under normal gravity condition. In addition, the results obtained from numerical simulations coupled with the PM internal flows are expected to provide basic and useful information in designing the microgravity fire detection devices and establishing in fire response protocol for astronauts or the crew members.

A Smoke Management System Design For Semiconductor Fabrication Facilities (반도체 공장의 제연설계)

  • ;Michael J. Ferreira
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2000
  • A performance-based design of smoke management systems for semiconductor fabrication facilities is described in this paper. The example of one such facility is discussed. Performance criteria for smoke control systems were established, effective smoke removal system features were identified and optimal system exhaust capacity requirements were developed by applying engineering tools including Fire Dynamic Simulator model. Considering the fact that the absence of relevant design guide, codes for consensus standards for semiconductor smoke design in Korea and United States this performance based approach can and should be applied to other fabrication facilities designs.

  • PDF

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part II: Multi-dimensional Fire Dynamics) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향 (Part II: 다차원 화재거동))

  • Kim, Jong-Hyun;Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.32-38
    • /
    • 2010
  • Multi-dimensional fire dynamics were studied numerically with the change in ventilation conditions in a full-scale ISO 9705 room. Fire Dynamic Simulator (FDS) was used for the identical conditions conducted in previous experiments. Flow rate and doorway width were changed to create over-ventilated fire (OVF) and under-ventilated fire (UVF). From the numerical simulation, it was found that the internal flow pattern rotated in the opposite direction for the UVF relative to the OVF so that a portion of products recirculated to the inside of compartment. Significant change in flow pattern with ventilation conditions may affect changes in the complex process of CO and soot formation inside the compartment due to increase in the residence time of high-temperature products. The fire behavior in the UVF created complex 3D characteristics of species distribution as well as thermal and flow structures. In particular, additional burning near the side wall inside the compartment significantly affected the flow pattern and CO production. The distribution of CO inside the compartment was explained with 3D $O_2$ distribution and flow patterns. It was observed that gas sampling at local positions in the upper layer were insufficient to completely characterize the internal structure of the compartment fire.

Improvement of Fire Detection in Rack-type Warehouses using FDS (FDS를 이용한 랙크식 창고의 화재감지 개선에 관한 연구)

  • Choi, Ki-Ok;Park, Moon-Woo;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.55-60
    • /
    • 2019
  • The occurrence of fire in rack-type warehouses may either lead to the warehouses getting entirely burned up or collapsing. This can be attrubuted to the high height of rack-type warehouses, in which combustibles are generally vertically stacked. These characteristics make it difficult to detect a fire early; because detectors are installed on the ceiling, these fires cannot be extinguished at an early stage. In this study, the flow of heat and smoke generated by a fire in a rack-type warehouse was analyzed using a fire dynamic simulator. Through this analysis, the optimal installation conditions of fire detectors for the early detection of fire in rack-type warehouses were confirmed. The analysis results confirmed that complex detection of heat and smoke is required for the early detection of fire in rack type warehouses. Furthermore, it was found that fixed temperature detectors are not suitable for these warehouses, resulting in the need to install heat-smoke hybrid detectors at every three rack levels.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.

Cable Functional Failure Time Evaluation for a Main Control Room Fire using Fire Dynamic Simulator (FDS 이용한 주제어실 화재시 케이블 기능상실시간 평가)

  • Lim, Heok-Soon;Kim, In-Hwan;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • Serious electrical problems, such as shorts, ground faults, or circuits, often cause fire events in the fire proof zone of nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety-related systems and equipment. The fire event can be treated with the basic design principle that safety systems should maintain their functions with redundancy and independency. In the case of a cable fire in the main control room, operators cannot perform their mission properly and can misjudge the situation because of spurious operation, incorrect indication or instrument. These would deteriorate the plant capabilities of safety shutdown and result in disastrous conditions. Therefore, during a main control room fire, 5 minutes of operator action time is very important to operate the safety shutdown components. This paper describes the cable functional failure temperature criteria and conducted a cable functional failure time evaluation using Fire Dynamic Simulator to obtain the operator action time for a main control room fire.

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.