• Title/Summary/Keyword: Fire Properties

Search Result 1,172, Processing Time 0.024 seconds

Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling (화재모델링 예측성능 개선을 위한 이온화식 연기감지기의 장치물성 측정)

  • Kim, Kyung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • The high prediction performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of PBD (Performance Based fire safety Design). The main objective of the present study is to measure input information in order to predict the accurate activation time of smoke detector into a Large Eddy Simulation (LES) fire model such as FDS (Fire Dynamics Simulator). To end this, FDE (Fire Detector Evaluator) which can measure the device properties of detector was developed, and the input information of Heskestad and Cleary's models was measured for a ionization smoke detector. In addition, the activation times of smoke detectors predicted using default values into FDS and measured values in the present study were systematically compared. As a result, the device properties of smoke detector examined in the present study showed a significant difference compared to the default values used into FDS, which resulted in the considerable difference of up to 15 minutes or more in terms of the activation time of smoke detector. The database (DB) on device properties of various smoke and heat detectors will be built to improve the reliability of PBD in future studies.

Estimation of Fire Dynamics Properties for Charring Material Using a Genetic Algorithm (유전 알고리즘을 이용한 탄화 재료의 화재 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung;Son, Bong-Sei;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.106-113
    • /
    • 2010
  • Fire characteristics can be analyzed more realistically by using more accurate material properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property analyses. In this study the genetic algorithm which is frequently applied for the inverse heat transfer problems is selected to demonstrate the procedure of obtaining fire properties of the solid charring material with relatively simple chemical structure. The thermal decomposition on the surface of the test plate is occurred by receiving the radiative energy from external heat sources, and in this process the heat transfer through the test plate can be simplified by an unsteady 1-D problem. The inverse property analysis based on the genetic algorithm is then applied for the estimation of the properties related to the reaction pyrolysis. The input parameters for the analysis are the surface temperature and mass loss rate of the char plate which are determined from the unsteady 1-D analysis with a givenset of 8 properties. The estimated properties using the inverse analysis based on the genetic algorithm show acceptable agreements with the input properties used to obtain the surface temperature and mass loss rate with errors between 1.8% for the specific heat of the virgin material and 151% for the specific heat of the charred material.

Mechanical and Electrical Properties of Aluminum Wires of ACSR Conductors due to Forest Fire (산불에 노출된 강심알루미늄연선 송전선 알루미늄 선재의 기계적 및 전기적 특성 거동)

  • Lee, Won-Kyo;Lee, Jung-Won;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.730-735
    • /
    • 2010
  • Forest fire can cause a serious damage to overhead conductors. Therefore, detailed investigation on the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is of critical importance in maintaining transmission line safely. This paper examines the changes of mechanical and electrical properties of flame exposed conductor. Tensile strength (TS) decreased according to increase of forest fire temperature and conductivity changed according to forest fire temperature. Specimens were aluminum conductors of aluminium conductor steel reinforced (ACSR) 410, 240, 480 $mm^2$. In this paper, the electrical and mechanical characteristics of forest fires exposed overhead conductors depending on the diameter of aluminum conductors are presented. It was possible to estimate the degree of deterioration caused by forest fires. The detailed results are given in the paper.

Evaluation Study on the Mechanical and Thermal Properties of High Strength Structural Steel at High Temperature (고강도 구조용 강재의 고온물성 평가연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.72-79
    • /
    • 2013
  • Recently, building constructions have been developed toward high-rise, long span, and multi-complexed using the high strength materials, optimized section. But the structural behavior of steel structural members built with a high strength steel at fire condition is not clarified because of lacking of information of related references such as mechanical and thermal properties at high temperature situation. In this paper, to evaluate the structural stability of member or frame of steel framed building at fire situation through the engineering method, the mechanical and thermal experimental coupon tests have conducted at various high temperatures and the comparison to those of ordinary strength steels were done.

Deterioration Character of tunnel damaged by fire and Fire Proofing Measure (화재에 의한 터널 열화특성 및 내화대책 기술)

  • Seo, Kang-Chun;Yoon, Tae-Gook;Park, Si-Hyun;Cho, Sung-Han;Kim, Eun-Chong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.129-139
    • /
    • 2005
  • In this paper, the behaviors of tunnel damaged by fire, the diagnostic techniques for evaluating tunnel stability are presented. Also two fireproof construction methods are recommended. Three tunnels damaged by fire were analyzed to evaluate the structural stability. From the these analyzed, it is recommended that surface checking, rebound number of concrete by Schmidt Hammer, and carbonation of concrete are essential to evaluate the engineering properties of concrete in tunnel structure damaged by fire. On the basis of case studies of tunnel fire collected by ITA, the change of concrete and steel strengths by fire are explained, and numerical analysis, which was performed on culvert and circle tunnel, shows that distribution of temperature in the tunnel is dependant upon tunnel shape. Two fireproof construction methods using panel and punching metal are introduced to protect the tunnel by fire.

  • PDF

Experimental Study on Making Databases for Fire Resistant Steel at High Temperature (내화강재의 고온특성 데이터베이스 구축 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • Fire at building can occur enormous damages to life, properties, and environment and the risk of fire breakout is going up higher because of application of combustible materials than before. Therefore, the steel industries are trying to develop fire resistant steel in order to sustain the load bearing capacity of steel structures during fire situation. In this paper, to give the basis data-bases for evaluation of structural stability of steel structures applied fire resistant steel, FR 490, the tests of mechanical and thermal properties at high temperature were conducted and the comparisons are done with the SM 490 that has the same mechanical one.

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.

내화피복 강재의 내화성능 평가 예측에 관한 연구

  • Seong, Si-Chang
    • Fire Protection Technology
    • /
    • s.17
    • /
    • pp.5-9
    • /
    • 1994
  • With a rapid development of economy, more high-rise buildings are being constructed in large cities than before. As a result steel members such as beams, columns make a great role of the building construction, and the need of them to be protected to have enough fire resistance is in-creasing . But conducting a real fire test to all the members is almost impossible. So prior to do conduct a real fire test of the protected steel members, evaluating the fire resistant rating of them by means of their specific properties might be economical things. This study is aimed to introduce the fire resistant rating of protected steel members without a real fire test through the related studies and data.

  • PDF

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns (철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안)

  • Kim, Sun-Hee;Ok, Chi Yeol;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.