• 제목/요약/키워드: Fire Modeling

Search Result 337, Processing Time 0.022 seconds

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

An analysis of a backdraft using FASTLite (FASTLite를 이용한 backdraft 사고의 해석)

  • Kim, Jin-Guk
    • Fire Protection Technology
    • /
    • s.22
    • /
    • pp.9-16
    • /
    • 1997
  • This paper has two objectives. One is to introduce a software package, "FASTLite" for fire safety engineering calculation, the other to show the modeling result of a backdraft incident on the 62 WATTS street. A classic backdraft usually persists only seconds before exhausting their fuel supply but in this case the flame had persists for at least 6 and a half minutes. It is truly necessary to find out where the fuel came from to feed this flame for so long. The backdraft is successfully modelled by using FASTLite. To help understanding of this backdraft, the calculation with the door open is also carried out and compared to the backdraft.

  • PDF

Uncertainty Evaluation of Fire Modeling Analysis Results (화재모델링의 불확실도 평가방안)

  • Park, Jong-Seuk;Lee, Chang-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.239-242
    • /
    • 2011
  • NFPA-805 불확실도 분석 요건에 따른 경수형 원전 스위치기어실 모터제어반의 화재시나리오에 대한 입력변수 불확실도 평가를 수행하였고 이를 통해 화재모델링의 불확실도 평가방안을 제시하였다. 화재모델링은 FDS5를, 불확실도분석은 MOSAIQUE를 사용하였고 Wilks 방법에 근거하여 93회의 latin hypercupe 샘플링을 수행하였다. 스위치기어실 케이블의 최소 평균손상시간은 212초로 예측되어 화재발생시 스위치기어실의 화재진압은 약 4분 이내에 이루어져야 하는 것으로 확인되었다.

  • PDF

Thermal characteristic analysis for NPP's safety-related cables by fire modeling (화재 모델을 이용한 원자력발전소 안전성 케이블의 열적 특성 분석)

  • Park, Sang-Jin;Jee, Moon-Hak
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.31-36
    • /
    • 2010
  • 원전 방화지역에서 화재가 발생할 경우 케이블 고장으로 인한 기기의 오동작 및 안전정지 기능에 미치는 영향 평가가 필요하다. 본 논문에서 FDS의 THIEF 모델을 이용하여 환기조건 및 열발생율 변화에 따른 원전 안전정지 케이블의 열적 특성을 분석하였다.

  • PDF

FIRE DISASTER SIMULATION BASED ON PARTICLE SYSTEM

  • Shin, Zen-Chung;Chen, Yean-Liang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.195-200
    • /
    • 1999
  • In computer graphics, the modeling and simulation of flames is a challenging problem. In this paper, we propose an approach for the simulation of a fire disaster. We use particle systems to describe the dynamic behavior fire. The illumination of dynamic flame is rendered by progressive radiosity algorithm.

The comparative analysis on Large scale fire tests through FDS simulation (FDS 모델링을 통한 실대화재시험 비교 분석)

  • Park, Kye-Won;Kim, Woon-Hyung;Jeong, Jae-Gun;Im, Hong-Soon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • On this study, The combustion properties in 3 kinds of sandwich panels based on ISO 13784-1(Room Corner Test for Sandwich panel building systems) using FDS Version 5 modeling method were tested and analyzed. Comparative analysis for those two results between FDS and real tests were made mainly concentrating on heat release rate.

  • PDF

A Study on the Effective Smoke Exhaust Amount of Load-Tunnel with Semi-Transverse Ventilation - Balanced Exhaust Case - (도로터널 반횡류식 환기방식의 최적배연 풍량산정에 관한 연구 - 균일배기의 경우 -)

  • Rie, Dong-Ho;Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.46-51
    • /
    • 2006
  • The smoke exhaust system is one of the effective systems to save lives when fire occurs underground. This study presents a complete analysis of effective smoke exhaust and smoke characteristics for a fire occurring with a transverse ventilation system use as a smoke exhaust system. The performance of the smoke management system was studied by computer modeling using FDS version 3.1. A fire size of 20MW was used for tunnel with balanced exhaust transverse ventilation. The smoke management design and the procedure as simulated in this study are also compliant to the tunnel construction and fire codes of Korea.

A Reliability Analysis on FDS Pyrolysis Model through Comparing the Room-Corner (ISO 9705) Test (룸 코너 콘 칼로리미터 시험(ISO 9705)과 비교를 통한 FDS 열분해 모델의 신뢰성 분석)

  • Yang, Sung-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong;Kim, Hag-Beom;Lee, Duck-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.585-593
    • /
    • 2011
  • Actual fire test under a laboratory and fire simulation by using computer are considered into main methodology in order to estimate and predict fire size of railway train. Even if practical fire size could be obtained from the full-model railway car test such as a large scale cone-calorimeter test, it is not always possible and realistic due to that expensive cost and attendant dangers could in no way be negligible. In this point of view, fire simulation analysis method based on the computational fluid dynamics could be proposed as an alternative and it seems to be also efficient and reasonable. However, simulation results have to be verified and validated in accordance with the proper procedure including comparing analysis with the actual fire test. In this paper, fire load and growth aspect was investigated through the room corner test (ISO 9705) for the mock-up model of the actual railway car. Then, it was compared with the output data derived from the simulation by using Pyrolysis Model of the FDS (Fire Dynamics Simulator, by NIST) for the exact same domain and condition corresponding with pre-performed room-corner test. This preliminary verified and validated fire modeling method could enhance the reliability of output data derived from the fire simulation under the similar domain and condition.

  • PDF

An Experimental Study on Temperature Measurement Bias using Thermocouple in Simulated Thermal Environments of Fire (모사된 화재의 열적환경에서 열전대를 이용한 온도 측정오차에 관한 실험적 연구)

  • Han, Ho-Sik;Yun, Hong-Seok;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.7-13
    • /
    • 2017
  • An experimental study was conducted to identify the quantitative measurement bias for the bare-bead thermocouple (TC), which was widely used for measuring temperature in fire experiments. To this end, an apparatus could be controlled individually gas flow rate, preheating temperature and incident radiative heat flux was developed to simulate the thermal environments of fire. A relative measurement bias of bare-bead TC was evaluated with the comparison of double-shield aspirated TC. As a result, the relative measurement bias of bare-bead TC was gradually increased with the increase in radiative heat flux with constant gas temperature. The relative bias was also significantly increased with the decrease in gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the bare-bead TC had the relative bias of approximately 400% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. The present study was intend to provide fire researchers with methodologies for the reanalyses of temperature measured using bare-bead TC, radiation corrections, and validation of fire modeling.