• Title/Summary/Keyword: Fire Extinguishing Agent

Search Result 100, Processing Time 0.022 seconds

Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas (불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성)

  • Shin, Chang-Sub;Jeon, Go-Un;Kim, Ki-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.

A Study on On-site Discharge Testing for Carbon Dioxide Fire Extinguishing Systems (이산화탄소 소화설비 현장 방출시험 방법론에 관한 고찰)

  • Park, Jun-Hyun;Kang, Tae-Seok;Kim, Jae-Hwan;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.26-32
    • /
    • 2015
  • Carbon dioxide principally extinguishes fires by smothering, but an acceptable amount of extinguishing agent is needed. To assure the performance of carbon dioxide systems in Korea, computer programs certified by NEMA are being applied in system design. But the design errors can occur because the geometry of a model test facility is not the same as that of the actual fire area. Since the discharge rate tends to vary considerably with the flow pattern in a pipe, an on-site discharge test is necessary to ensure the performance of the system, especially with low pressure carbon dioxide. Technical standards for carbon dioxide systems do not give detailed guidelines for discharge tests at present. Based on comparative analysis of standards and practical tests, this paper suggests a methodology for on-site discharge tests.

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

Development of Loaded Stream Fire Extinguishing Systems for Underground Transmission Cables (지중송전선로 접속부용 미분무 강화액 소화설비의 개발연구)

  • Lee, Sung-Mo
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • Full-scale fire extinguishment tests were conducted to develop loaded stream fire extinguishing systems for protecting underground transmission cables. The dimension of test mock-up was 5.5m height${\times}3m$ width ${\times}6m$ length, and six 154kV OF cables were piled up. Gasoline was used to ignite cates. Linear heat detection cables were installed on top of 154 kV OF cable and discharge nozzles were installed on the top and sidewalls, respectively. As a result, both surface fires and deap-seated fires were extinguished successfully within the specified 3 minutes by discharging loaded stream agent.

Study on the Safe use of the Chemical Extinguishing Agent (화학물질 소화약제 안전한 사용에 관한 연구)

  • Cho, Jung-Rae
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.118-129
    • /
    • 2018
  • This study analyzed the recent serious disaster cases of chemical extinguishing agent poisoning and suffocation investigated by KOSHA and proposed the safe use of chemical substances, including the chemical extinguishing agent. An analysis of the statistical figures an increase in the number and variations of chemical poisoning and suffocation cases in industry between 2011~2016 increased. Unlike other physical accidents, chemical accidents are very high in severity and it is difficult to identify the chemical hazard and risk. To prevent chemical disasters, it is essential to develop and use an easy chemical risk assessment tool. For the safe use of chemical substances, in which it is difficult to carry out hazard identification and risk assessments, this thesis presents the useful chemical recognition and risk assessment tools, CHEM-i and CHARM developed by KOSHA.

Risk Assessment of exposure to the extinguishing agents using CHARM (CHARM을 통한 소화약제 위험성 평가에 관한 연구)

  • Cho, Jung Rae;Jung, Tae Hwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.35-41
    • /
    • 2017
  • Recently chemical intoxication related with the use of chemical extinguishing agents occurs frequently. With the industrialization, high-rising of building and increase of fire risk, we use the various extinguishing agents and the safe use become important. In this study I carried out the risk assessment of representative chemical extinguishing agents (HCFC-123, HFC-125) using the CHARM and got the meaningful qualitative outcome. This study is significant in that the risk assessment of chemicals was conducted using CHARM, chemical risk assessment tool. It is expected that the results will be utilized as the basic data for the national chemical safety management.

Manufacturing of Extinguishing Powder of Expanded Glass from Recycling Automotive Glass Powder (자동차 폐유리 분말을 이용한 팽창유리 소화약제의 제조)

  • Duk-Woo, Jeon;Jung-Ho, Park;Yong-Kwon, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, we secured a technology for manufacturing expanded glass of uniform quality by using general tempered glass, that is, window glass, among automotive glass that is scrapped, and verified whether the manufactured expanded glass can be used for lithium battery fire suppression. The process of manufacturing expanded glass using waste glass is generally divided into Crushing → Milling → Granulation → Expansion → Cooling. With several trials a nd errors. It is obtained a yield of 0.5 ø mm to 2 ø mm spherical particles of 80 % or more. By comparing the surface analysis and physical properties, a more suitable sample was selected as a fire extinguishing agent for lithium batteries, and it was confirmed that the result of the adaptability test for lithium battery fire was satisfactory.

A Study on Powder Fire Extinguisher Design with RULA Technique Used (RULA 평가기법을 활용한 분말소화기 디자인 연구)

  • Kang, Chaewoo;Kim, Dueknam
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • This study was intended to find methods of fire extinguishing system designs that can improve the equipment's usability. In this study, the fire suppression experiment through fire extinguishers and the data drawn through the experiment were analyzed, and then the guideline for the improvement of designs was presented. The procedure is as follows. A fire suppression experiment with the use of fire extinguishers was done by 43 average adults. The whole process of the fire suppression was videotaped, and then captured major scenes were analyzed with the use of RULA, a human engineering measurement tool. The analyzed data were divided into 4 steps, and then the guideline for design improvement was presented. The summary of the study is as follows. Step 1, Fire extinguisher distance step. To reduce overload occurring at the process of holding fire extinguishers suddenly, wheels are attached to the body of extinguishers, or pedestals are installed. Step 2, Fire extinguisher transportation step. The length of hose is extended, or fire fighting water is sprayed far, so that overload of legs occurring at the process of travel can be reduced. In addition, the weight of fire extinguisher shouldn't be over 2 kg. Step 3, Safety pin removal stage. Safety pins should be applied with button type, so that excessive posture of lower limbs and excessive twisting of wrists won't happen during safety pin removal process. Besides, safety pins should be designed for easy identification and operation. Step 4, Fire extinguishing agent spraying step. To reduce overload occurring at sudden spraying of fire fighting water, pressure should be increased gradually until high pressure. With the above study results applied to existing fire extinguisher design, it may contribute to reducing any fire damage.

Legal Aspects on ICAO SARPs Regarding Alternative Fire Extinguishing Agent to Halon Fire Extinguishers

  • Lee, Gun-young;Kang, Woo-Jung
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.1
    • /
    • pp.205-226
    • /
    • 2018
  • For sustainable development of air transport, the establishment and application of international standards of environmental protection area is significant. The development and use of alternative fire extinguishing agent to Halon, which is used for the fire extinguishing systems of engine nacelles/APU and cargo compartments, has been requested in order to protect the ozone layer. The ICAO has been active in preparing international standards and recommended practices (SARPs); however, certification of alternative fire extinguishing agents has been postponed due to technical readiness problem.. Consequently, the implementation of SARPs has also been postponed by two years from the end of 2016. to the end of 2018. As such consequences have caused confusion among Member States regarding its implementation, it is necessary to discuss and pay more attention to this issue. ICAO Council and Air Navigation Commission should consider between setting the implementation time frame earlier or giving enough time for mature readiness and preparedness. Also in order to minimize the unnecessary discharge of Halon owned by Member States, it is necessary to consider efficient management methodologies; for example, requesting fire extinguisher manufacturers to recharge in professional ways. For the successful implementation of the SARPs, ICAO developed an implementation task list as including notification of differences, establishment of a national implementation plan, drafting of the modification to the national regulations and means of compliance, adoption of the national regulations and means of compliance. Member States can develop their own rule making process in reference with the ICAO implementation task list. This issue was presented and discussed during the 54th Conference of Directors General of civil aviation, Asia and Pacific Regions which was held in Ulaanbaatar, Mongolia in 2017 with significant attention among participated Contacting States. In this regards, ICAO Council and Air Navigation Commission should consult with Legal Bureau lawyers regarding SARPs preparing process to eliminate difficulties and confusions for proper implementation within effective date.

A Technical Description on The Safety Aspects related To Gas Suppression Fire Protection System (가스계 소화시스템관련 안전기술)

  • 이창욱
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.21-29
    • /
    • 2002
  • With regard to the personnel safety and other safety when the gas suppressants are discharged into the area where occupants exist, the short term and long term effects to the health of people are discussed mainly with the Carbon dioxide agent and Halon Replacement agents system. To gain the benefits of CO2 extinguishing systems while minimizing risk to people serious attention must be given to personnel safety in the design, installation, and maintenance of CO2 systems. Training of personnel is essential. A major factor in the use of a clean agent fire suppressant in a normally occupied area is toxicity. While all halocarbon agents are tested for long-term health hazards, the primary endpoint is acute or short-term exposure, The primary acute toxicity effects of the halocarbon agents described here are anesthesia and cardiac sensitization. For inert gases, the primary physiological concern is reduced oxygen concentration.

  • PDF