• Title/Summary/Keyword: Fire Dynamic Simulator model

Search Result 13, Processing Time 0.025 seconds

FIRE DYNAMIC SIMULATOR WITH MARKER PARTICLES (표시입자가 적용된 FDS 코드 개발)

  • Choi, C.B.;Jang, Y.J.;Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.55-63
    • /
    • 2011
  • In this study, Fire Dynamic Simulator (FDS) has been improved with the implementation of marker particles. Convectional FDS is able to implement only two curved geometries, namely, circular cylinders and spheres. The introduction of marker particles made it possible to implement arbitrarily curved objects. Moreover, an algorithm that extracts the marker particle information from a model designed by AutoCAD was developed. With the present implementation, applicability of FDS is greatly enhanced, beneficial to both academia and industry.

A Smoke Management System Design For Semiconductor Fabrication Facilities (반도체 공장의 제연설계)

  • ;Michael J. Ferreira
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2000
  • A performance-based design of smoke management systems for semiconductor fabrication facilities is described in this paper. The example of one such facility is discussed. Performance criteria for smoke control systems were established, effective smoke removal system features were identified and optimal system exhaust capacity requirements were developed by applying engineering tools including Fire Dynamic Simulator model. Considering the fact that the absence of relevant design guide, codes for consensus standards for semiconductor smoke design in Korea and United States this performance based approach can and should be applied to other fabrication facilities designs.

  • PDF

Test Methods for FDS modeling for passenger trains (철도차량 화재모델링에서의 재료별 연소특성 시험법 조사)

  • Lee, Duck-Hee;Lee, Cheul-Kyu;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.982-988
    • /
    • 2007
  • The input data for the interior material of the train is one of the key points for enhancing the accuracy of fire simulation. In this study, we investigated the Fire Test Methods for the Fire Dynamic Simulator modeling for railroad passenger trains. We should get the thermal inputs such as ignition temperature, conductivity, specific heat, vaporization heat, effective heat release. With the simple conduction model for cone-calorimeter test, they could get more than HRR. Kinds of methodology were introduced for better thermal data for real material.

  • PDF

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

A Study on the Crew's Survival ratio according to ship's structure (선박구조가 승무원 생존율에 미치는 영향에 대한 연구)

  • Kim, Won-Ouk
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.423-427
    • /
    • 2010
  • Land fire receives additional extinguishing methods easily by professional extinguisher. But because of isolation and independence from land when sailing on the sea, ships are difficult to get special help from land. Generally, the death ratio by suffocation is higher than the death rate by flame and to reduce suffocation death ratio, fast evacuation is required. This paper aims to improve survival ratio at ship fires by soot density reduction. This study examines soot density and visibility using FDS. And also examines evacuation time by Pathfinder. The FDS(Fire Dynamic Simulator) is a 3 zone model(Field Model) analysis tool and the patherfinder is a useful analysis tool for evacuation. This research examined about evacuation time using the current regulations of the ship's corridor width and exit width first. And then studied evacuation time again when ship's structure was changed according to the method that is proposed in this paper. And finally compared the results each other.

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

A Study on the Crew's Survival ratio according to ship's construction (선박구조가 승무원 생존율에 미치는 영향에 대한 연구)

  • Kim, Won-Ouk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.50-51
    • /
    • 2009
  • This paper aims to improve survival ratio at ship fires by soot density reduction This study examines soot density and visibility using FDS. And also examines evacuation time by Pathfinder. The FDS(Fire Dynamic Simulator) is a 3 zone model(Field Model) analysis tool and the patherfinder is a useful analysis tool for evacuation. This research examined about evacuation time using the current regulations of the ship's corridor width and exit width first And then studied evacuation time again when ship's structure was changed according to the method that is proposed in this paper. And finally compared the results each other.

  • PDF

A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time (점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구)

  • Ko, Min Wook;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

Simulation Study of Smoke Control Accordance with Zoning in the Atrium Space of High-rise Buildings (초고층 건물 아트리움 공간에서의 제연구획에 따른 시뮬레이션 연구)

  • Ryu, Hyungkyou;Bae, Sanghwan;Lee, Byungseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.335-342
    • /
    • 2014
  • The big issue in fire and life safety protection in atriums is that hot smoke can spread vertically via the atrium openings, and impact atrium floors remote from the fire. Three different strategies to provide fire and life safety protection for atrium space were evaluated in this study, using the FDS model. Strategy A is the atrium protection approach addressed in the Korean Building Fire Protection Code, where atria are required to be enclosed with fire shutters from the $2^{nd}$ floor to the atrium top, and the ground floor is allowed to open to the atrium; in this case, no smoke control is required. Strategy B is the atrium protection approach, with smoke control provided in accordance with NFPA 92B; in this case, no atrium floor is enclosed. Strategy C is the atrium protection approach, in which some of the upper atrium floors are enclosed (the case of the top atrium floor being enclosed is evaluated in this study), and atrium smoke control is also provided to protect the lower atrium floors.