• Title/Summary/Keyword: Finn model

Search Result 16, Processing Time 0.02 seconds

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

Seismic Risk Analysis of Quay wall Considering Effective Stress (유효응력효과를 고려한 안벽의 지진위험도 평가)

  • Kim, So Yeon;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Seismic risk analysis was performed based on the total stress and effective stress of caisson type quay wall and pier type quay wall. In order to consider the effective stress effect, the pore pressure of the ground was distributed, using Byrne(1991) simple formula to estimate parameter and applied to the finn model. Through the results of seismic risk analysis according to the total stress and effective stress analysis method, the necessity of effective stress analysis in the seismic design of the quay wall installed on the soft ground was confirmed.

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests (액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정)

  • Tung, Do Van;Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.35-46
    • /
    • 2020
  • The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

A Study on the Dynamic Behaviour of Composite Breakwaters Based on Dynamic Analysis Considering Effective Stresses (유효응력을 고려한 동해석을 통한 직립식 방파제의 동적 거동에 대한 연구)

  • Youngjin Jeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.11
    • /
    • pp.45-53
    • /
    • 2024
  • In the current work, finite difference analysis was conducted by investigating the influence of dynamic analysis, considering effective stress, on the dynamic response of composite breakwaters. For comparison, the seismic behavior of breakwaters during the Kobe earthquake was analyzed, and performance-based seismic design was validated through centrifuge model test data, accompanied by a parametric study. The composite breakwaters damaged by the Kobe earthquake were verified through numerical analysis based on effective stress analysis, and validation of both centrifuge model tests and numerical analysis methods was conducted. The results of numerical analysis confirmed the seismic resistance based on the performance-based. And the results of analysis identified similar vertical displacement and liquefaction have confirmed through excess pore pressures. Also this study was conducted on the based on performance-based seismic deign, focusing on the results of acceleration, displacement, pore pressure, and liquefaction. Therefore the purpose of this study is to verify the results of pore pressure and liquefaction through the application and non-application of Finn model to compare the determination of liquefaction by the effective stress analysis.

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

A numerical study on the effect of train-induced vibration in shield tunnel (쉴드터널 내부에 작용하는 열차진동 영향에 관한 수치해석적 연구)

  • Kwak, C.W.;Park, I.J.;Park, J.B.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.261-267
    • /
    • 2014
  • Various types of external loads can be applied to the tunnel structure. In a shield tunnel, the vibration from the train may affect the behavior of the adjacent ground. In this study, the railway-induced vibration was estimated and applied to the shield tunnel through 3D numerical simulation. The effective stress analysis based on the finite difference method and Finn model was performed to investigate the potential of liquefaction below the tunnel. Furthermore, pore water pressure and displacement were monitored on a time domain; consequently, the liquefaction potential and dynamic response of the shield tunnel were analyzed. Consequently, it is confirmed that the generation of excess pore water pressure by train-induced vibrating load, however, the amount does not meaningfully affect the potential of liquefaction.

Carbon Budget and Network Analysis of a Surf Zone Ecosystem by NETWRK (NETWRK을 이용한 쇄파대 생태계의 탄소수지와 네트웍 해석)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • A carbon budget model was constructed and analyzed for the Bangjukpo surf zone ecosystem in southern Korea by using the NETWRK. The model consists of 11 living and 1 non-living groups. Using boxes and arrows, a topological map was created to depict biomasses of each group and exchange rates between them. The system includes primary producers of phytoplankton and benthic algae, primary consumers of particle feeding zooplankton, carnivorous zooplankton, meiobenthos, malacostracans and bivalves, and top consumers of detrivorous, omnivorous, carnivorous and piscivorous fishes. The surf zone ecosystem was analyzed by means of network analysis, showing total system throughput of $574\;gCm^{-2}yr^{-1},$ development capacity of $1,876\;gCm^{-2}yr^{-1},$ ascendancy value of $768\;gCm^{-2}yr^{-1},$ Finn cycling index of $4.4\%$ and internal relative ascendancy of $27\%.$ These results were compared with similar data from other systems.

A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis (액상화 해석을 위한 UBC3D-PLM의 적용성에 관한 연구)

  • Park, Eon-Sang;Kim, Byung-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, a model parameter evaluation method using relative density was proposed to utilize applicable UBC3D-PLM for liquefaction behavior. In addition, dynamic effective stress analysis, that is, liquefaction analysis, was performed on the case of the liquefaction occurrence region where acceleration and pore water pressure were measured, and compared with the actual measurement and the existing Finn analysis results. Through this study, it was found that the proposed method can easily evaluate the necessary parameters required by the related model and predict the pore water pressure behavior in the region where liquefaction occurs. In addition, in the case of the study area, both measurements and numerical analysis showed that liquefaction occurred when a certain amount of time elapsed after the earthquake acceleration reached the maximum value. In the case of UBC3D-PLM applied in this study, the excess pore water pressure behavior similar to the actual measurement was predicted, and the occurrence of liquefaction was evaluated in the same way as the actual measurement. In particular, although the excess pore water pressure in the sand layer was greater, the phenomenon in which liquefaction occurred in the silt layer was accurately realized. It is expected that the proposed model parameter evaluation method and finite element analysis applying UBC3D-PLM can be used to select the liquefaction reinforcement region in the future seismic design and reinforcement by evaluating the liquefaction occurrence region similarly to the real one.