• Title/Summary/Keyword: Finiteness dimension

Search Result 9, Processing Time 0.021 seconds

LOCAL-GLOBAL PRINCIPLE AND GENERALIZED LOCAL COHOMOLOGY MODULES

  • Bui Thi Hong Cam;Nguyen Minh Tri;Do Ngoc Yen
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.649-661
    • /
    • 2023
  • Let 𝓜 be a stable Serre subcategory of the category of R-modules. We introduce the concept of 𝓜-minimax R-modules and investigate the local-global principle for generalized local cohomology modules that concerns to the 𝓜-minimaxness. We also provide the 𝓜-finiteness dimension f𝓜I (M, N) of M, N relative to I which is an extension the finiteness dimension fI (N) of a finitely generated R-module N relative to I.

ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.109-115
    • /
    • 2020
  • Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group ℤ ∗ ℤ, then there are only finitely many real structures on X, up to ℝ-isomorphisms.

NEGATIVELY BOUNDED SOLUTIONS FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

  • FANG ZHONG BO;KWAK, MIN-KYU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.829-836
    • /
    • 2005
  • In this note, we introduce a new proof of the unique-ness and existence of a negatively bounded solution for a parabolic partial differential equation. The uniqueness in particular implies the finiteness of the Fourier spanning dimension of the global attractor and the existence allows a construction of an inertial manifold.

FINITENESS OF INFINITESIMAL DEFORMATIONS OF CR MAPPINGS OF CR MANIFOLDS OF NONDEGENERATE LEVI FORM

  • Cho, Chung-Ki;Han, Chong-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.91-102
    • /
    • 2002
  • Let M and N be CR manifolds with nondegenerate Levi forms of hypersurface type of dimension 2m + 1 and 2n + 1, respectively, where 1 $\leq$ m $\leq$ n. Let f : M longrightarrow N be a CR mapping. Under a generic assumption we construct a complete system of finite order for the infinitesimal deformations of f. In particular, we prove the space of infinitesimal deformations of f forms a finite dimensional Lie algebra.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES

  • Hatamkhani, Marziyeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.917-928
    • /
    • 2022
  • Let R be a commutative Noetherian ring and I an ideal of R. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let M be a finitely generated R-module and N a representable R-module. We introduce the notions of the representation dimension rI(M, N) and artinianness dimension aI(M, N) of M, N with respect to I by rI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not representable} and aI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not artinian} and we show that aI(M, N) = rI(M, N) = inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)} ≥ inf{aIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)}. Also, in the case where R is semi-local and N a semi discrete linearly compact R-module such that N/∩t>0ItN is artinian we prove that inf{i : HIi(M, N) is not minimax}=inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)\Max(R)}.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.167-177
    • /
    • 2020
  • Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.

호스피스와 종교적 죽음이해

  • Sin, Min-Seon;Kim, Mun-Su
    • Korean Journal of Hospice Care
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • There are various understandings how to define death. In the context of medicine, death is defined as the irreversible change of the tissue according to the cessation of circulation and respiration. According to the psychologists, a person need to accept the finiteness as a human being and remain conscious that the death is not avoidable. And they say if a person doesn't regard death as unavoidable reality of life he or she will not confront the humanistic death and after all will die like animals. In philosophy, death is viewed as an unwelcome reality in the end of the journey of life. Sociologists usually understand that the society is the organization composed with living persons and human beings which construct and transmit the culture from generation to generation between the both ends of life and death. In society, the generation is changed, maintained, and developed through the phenomenon of death. Although death of human being is natural event in society, the death of a specific person brings a sense of loss, crisis, and anxiety to the communities like family, regional society, nation, and the world. In this context, death is not confined to personal dimension and it can be regarded as a social problem. It is valuable to summarize the religious perspectives on the meaning of death for the better hospice care. In shamanism, there are basic idea that although the flesh of human being disappears, soul never die. If human dies, the flesh of human being disappears but soul never disappear and come back to the origin of soul as it is called chaos. So in shamanism, it is said that shaman can solve the mortified feeling, restore the broken harmony, send the soul to comfortable space- the origin, and guarantee the blessing of descendents. Buddhists regard the death as an essential component through the cycles of life. Through this cycle, human being exits as an endlessly transmigrating being and the death is just a restoration to the original status. In Confucianism, the view on the death based on the philosophy of the "Yin and Yang" and "Five elements". In Buddhist tradition, many believers said the philosophy of "Death is the same as life". Unlike usual thoughts that a god governs "life and death" and "fortune and misfortune", Confucianists deny the governance of a god and emphasize the natural orders in which every phenomenon in the world moves according to the principle. Confucianists understand the death as a natural order with this principle. In Confucianists' belief, the essence of human being remains in their own descendent's lives after the death of ancestor, so in Confucianism there is no concept of immortality of the soul. In the history of Christianity, death has been defined generally as the separation of the immortal soul from the mortal body. In the earlier days of Old Testament, the death is regarded as a disappearance of just a flesh and human never disappear and always live in the relationship with God. Later days in Old Testament, we can find the growing concern for the life after the death because of the entrance of the theodicy. In the New Testament, the death is not regarded as the normal process of the human life and regarded as the abnormal status in which death come to human because of sin as a decisive factor and it should be conquered. In fact, the most of us afraid death because not of the fear of death itself but of the sense of the emptiness and regrets. so many people often make the monument hoping to live forever. But Christian usually regard this behavior as a sinful act because human being usually think themselves as a master of their life and attempt to become immortal in this kind of trial mortal. But if we live with God, we cannot confront such a condition because we aware limits as a mortal human being and entrust everything on Him and want to live according to His guidance. Therefore, in the Christian tradition, the death is regarded as accomplishment of life, fruits of life, invitation to the eternal life, and the last stage of human growth. For human being, the death is the great step of maturation as a human in the final stage of life.

  • PDF