• Title/Summary/Keyword: Finite-state machine

Search Result 231, Processing Time 0.031 seconds

Dynamic Characteristics Prediction of Rubber Mounts for Anti-Vibration of an Optical Disk Drive (광디스크 드라이브 방진마운트의 동특성 예측)

  • Kim, Guk-Won;Kim, Nam-Ung;Im, Jong-Rak;An, Tae-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.104-109
    • /
    • 2001
  • With the increase of storage density and data transfer rates in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. However, there are still a lot of difficulties in the use of designing the rubber components with complex shape and under pre-deformed state. It was demonstrated in that the variation of rubber component stiffness with the pre-deformed state were calculated by the finite element method and the reliability of numerical results were checked by compared with the measuring the deflection values. This paper presents a efficient design method of rubber mounts for anti-vibration of an optical disk thrive. With an empirical equation to estimate elastic modulus from hardness, and dynamic characteristics of rubber material of a cylindrical shape, this method is capable of predicting the dynamic characteristics of rubber components at design stage.

  • PDF

Control System Design for Stable Teleoperation of Supermicrosurgical Robot (초미세수술 로봇의 안정적인 원격조작을 위한 제어시스템 설계)

  • Geonuk Kim;Raimarius Delgado;Yong Seok Ihn
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.169-175
    • /
    • 2024
  • In this study, we developed control system for stable teleoperation of supermicrosurgical robot platform. The supermicrosurgical robot platform is designed to perform precise anastomosis with micro vessels ranging from 0.3 mm to 0.7 mm. The robotic assistance could help more precise manipulation then manual surgery with the help of motion scaling and tremor filtering. However, since the robotic system could cause several vulnerabilities, control system for stable teleoperation should be preceded. Therefore, we first designed control system including inverse kinematics solver, clutch error interpolator and finite state machine. The inverse kinematics solver was designed to minimized inertial motion of the manipulator and tested by applying orientational motion. To make robot slowly converges to the leader's orientation when orientational error was occurred during clutch, the SLERP was used to interpolate the error. Since synchronized behavior of two manipulators and independent behavior of manipulator both exist, two layered finite state machines were designed. Finally, the control system was evaluated by experiment and showed intended behavior, while maintaining low pose error.

Numerical Prediction of Brake Fluid Temperature Considering Materials of Piston During Braking (제동시 피스톤 소재를 고려한 브레이크 오일 온도의 수치적 예측)

  • 김수태;김진한;김주신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Recently, many studies have been performed and good results have been reported in literature on the prediction of the brake disk temperature. However, study on the brake fluid temperature is rarely found despite of its importance. In this study, brake fluid temperature is predicted according to material property of brake piston. For the analysis, a typical disk-pad brake system is modeled including the brake disk, pad, caliper, piston and brake fluid. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady-state temperature distribution are analyzed by using the finite element method and numerical results are compared with the vehicle test data

  • PDF

A Study on the Temperature Distribution of Disc Brake System Considering the Material Property of the Disc Brake Piston (디스크 브레이크 피스톤 재질을 고려한 브레이크 시스템 온도 분포에 관한 연구)

  • Kim, Soo-Tae;Kim, Jin-Han;Kim, Joo-Shin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-51
    • /
    • 2005
  • Braking performance of a vehicle can be significantly affected by the temperature increment in the brake system. Therefore, the important problem in brake system is to reduce the thermal effect by friction heat. Recently, many studies have been performed and good results have been reported on the prediction of the brake disk temperature. However, the study on the pad, piston and brake fluid temperature is rarely found despite of its importance. In this study, the temperature distribution of the disc brake system is studied according to the material properties of brake piston. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady state temperature distributions are analyzed by using the finite element method and the numerical results are compared with the experimental data.

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

Development of Verification and Conformance Test Generation of Communication Protocol for Railway Signaling Systems

  • Lee, Jae-Ho;Hwang, Jong-Gyu;Seo, Mi-Seon;Kim, Sung-Un;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.358-362
    • /
    • 2004
  • Verification and testing are complementary techniques that are used to increase the level of confidence in the correct functioning of communication systems as prescribed by their specifications. This paper presents an experience of model checking for a formal railway signaling protocol specified in LTS (Labeled Transition System). This formal approach checks deadlock, livelock and reachability for the state and action to verify whether properties expressed in modal logic are true on specifications. We also propose a formal method for semi-automated test case generation for a railway signaling protocol described in I/O FSM (Input/Output Finite State Machine). This enables the generation of more complete and consistent test sequence for conformance testing. The above functions are implemented by C++ language and included within RSPVTE (Railway Signaling Protocol Verification and Testing Environment).

  • PDF

A Four State Rotational Frequency Detector for Fast Frequency Acquisition

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • This paper proposes a new rotational frequency detector (RFD) for phase-locked loop (PLL) or clock and data recovery (CDR) applications for fast frequency acquisition. The proposed RFD uses the four states finite state machine (FSM) model to accelerate the frequency acquisition time. It is modeled and simulated with MATLAB Simulink. The functionalities of the proposed RFD are examined and the results are compared to those of a conventional RFD. The proposed RFD's frequency acquisition time is four times faster than that of a conventional one. The proposed RFD incorporated with a phase detector (PD) in PLL or CDR is expected to improve the frequency and phase acquisition performance later greatly.

Design Methodologies for Reliable Clock Networks

  • Joo, Deokjin;Kang, Minseok;Kim, Taewhan
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.257-266
    • /
    • 2012
  • This paper overviews clock design problems related to the circuit reliability in deep submicron design technology. The topics include the clock polarity assignment problem for reducing peak power/ground noise, clock mesh network design problem for tolerating clock delay variation, electromagnetic interference aware clock optimization problem, adjustable delay buffer allocation and assignment problem to support multiple voltage mode designs, and the state encoding problem for reducing peak current in sequential elements. The last topic belongs to finite state machine (FSM) design and is not directly related to the clock design, but it can be viewed that reducing noise at the sequential elements driven by clock signal is contained in the spectrum of reliable circuit design from the clock source down to sequential elements.

Data Avaliability Scheduling for Synthesis Beyond Basic Block Scope

  • Kim, Jongsoo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • High-Level synthesis of digital circuits calls for automatic translation of a behavioral description to a structural design entity represented in terms of components and connection. One of the critical steps in high-level synthesis is to determine a particular scheduling algorithm that will assign behavioral operations to control states. A new scheduling algorithm called Data Availability Scheduling (DAS) for high-level synthesis is presented. It can determine an appropriate scheduling algorithm and minimize the number of states required using data availability and dependency conditions extracted from the behavioral code, taking into account of states required using data availability and dependency conditions extracted from the behavioral code, taking into account resource constraint in each control state. The DAS algorithm is efficient because data availability conditions, and conditional and wait statements break the behavioral code into manageable pieces which are analyzed independently. The output is the number of states in a finite state machine and shows better results than those of previous algorithms.

  • PDF

A Study on TCVQ Using Orthogonal Spline Wavelet (직교 스플라인 웨이브렛 변환을 이용한 TCVQ 설계에 관한 연구)

  • 류중일;김인겸;김성만;정현민;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1383-1392
    • /
    • 1995
  • In this paper, the method to incorporate TCVQ(Trellis Copded Vector Quantizer) into the encoding of the wavelet trans formed(WT) image followed by a variable length coding(VLC) or an entropy coding(EC) is considered. By WT, an original image is separated into 10 bands with various resolutions and directional components. TCVQ used to compress these WT coefficients is a finite state machine that encodes the input source on the basis of the current input and the current state. Wavelet basis used in this paper is designed by orthogonal spline function. A modified set partitioning algorithm to Wang's is also presented. A simple modification to Wang's algorithm gives a highly time-efficient result. Proposed WT-TCVQ encoder shows a very competitive result, giving 37.46dB in PSNR at 1.002bpp when encoding 512$\times$512 LENA.

  • PDF