• Title/Summary/Keyword: Finite-difference

Search Result 3,273, Processing Time 0.027 seconds

A Study on the Assessment of Safety Factor of Tunnels (터널의 안전율 평가 기법에 관한 연구)

  • 박종원;박연준;유광호;이상돈
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.327-338
    • /
    • 2004
  • The purpose of this research is to establish a concept of the factor of safety of tunnels which is a quantitative estimate of the stability of tunnels. Based on this concept, a numerical technique which calculates the factor of safety of tunnels was developed. To obtain the safety factor of a tunnel, the strength reduction technique in which a series of analyses are repeated with reduced ground strength until the tunnel collapses were employed. With this technique, the failure plane, as well as the factor of safety, can be obtained without prescribing the trial failure plane. Analyses were conducted with FLA $C^{2D}$(ver3.3), a geotechnical analysis program which is based on the finite difference method. From the result, the location of plastic zones, the maximum convergence and the maximum stress generated in the support system were also analyzed. The result shows that factors of safety are higher for the 1st and 2nd rock classes, and lower for the lower rock classes. Furthermore, factor of safety is higher when $K_{0}$ =0.5 compared to at in case of $K_{0}$ =2.0. Through this research, it is found that the factor of safety defined in this research can be used as a good quantitative index representing the stability of tunnels. Also, close examination of the results can help adjustment of the quantity and location of additional supports.s.

Study of a "wing-type" implant on stress distribution and bone resorption at the alveolar crest

  • Park, Jong-Wook;Kim, Sin-Guen;Choi, Dong-Won;Choi, Mi-Ra;Yoon, Youn-Jin;Park, Jun-Woo;Choi, Dong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.337-342
    • /
    • 2012
  • Objectives: Implants connect the internal body to its external structure, and is mainly supported by alveolar bone. Stable osseointegration is therefore required when implants are inserted into bone to retain structural integrity. In this paper, we present an implant with a "wing" design on its area. This type of implant improved stress distribution patterns and promoted changes in bone remodeling. Materials and Methods: Finite element analysis was performed on two types of implants. One implant was designed to have wings on its cervical area, and the other was a general root form type. On each implant, tensile and compressive forces ($30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$) were loaded in the vertical direction. Stress distribution and displacement were subsequently measured. Results: The maximum stresses measured for the compressive forces of the wing-type implant were $21.5979N/m^2$, $25.1974N/m^2$, $29.7971N/m^2$, and $32.3967N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. The maximum stresses measured for the root form type were $23.0442N/m^2$, $26.9950N/m^2$, $30.7257N/m^2$, and $34.5584N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. Thus, the maximum stresses measured for the tensile force of the root form implant were significantly higher (about three times greater) than the wing-type implant. The displacement of each implant showed no significant difference. Modifying the design of cervical implants improves the strength of bone structure surrounding these implants. In this study, we used the wing-type cervical design to reduce both compressive and tensile distribution forces loaded onto the surrounding structures. In future studies, we will optimize implant length and placement to improve results. Conclusion: 1. Changing the cervical design of implants improves stress distribution to the surrounding bone. 2. The wing-type implant yielded better results, in terms of stress distribution, than the former root-type implant.

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

An Introduction to Kinetic Monte Carlo Methods for Nano-scale Diffusion Process Modeling (나노 스케일 확산 공정 모사를 위한 동력학적 몬테칼로 소개)

  • Hwang, Chi-Ok;Seo, Ji-Hyun;Kwon, Oh-Seob;Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.25-31
    • /
    • 2004
  • In this paper, we introduce kinetic Monte Carlo (kMC) methods for simulating diffusion process in nano-scale device fabrication. At first, we review kMC theory and backgrounds and give a simple point defect diffusion process modeling in thermal annealing after ion (electron) implantation into Si crystalline substrate to help understand kinetic Monte Carlo methods. kMC is a kind of Monte Carlo but can simulate time evolution of diffusion process through Poisson probabilistic process. In kMC diffusion process, instead of. solving differential reaction-diffusion equations via conventional finite difference or element methods, it is based on a series of chemical reaction (between atoms and/or defects) or diffusion events according to event rates of all possible events. Every event has its own event rate and time evolution of semiconductor diffusion process is directly simulated. Those event rates can be derived either directly from molecular dynamics (MD) or first-principles (ab-initio) calculations, or from experimental data.

Analysis of Near Field for Base Station Panel Antenna(4 X 2 Dipole Array) (기지국용 판넬 안테나(4 X 2 Dipole Array)의 근역장 분석)

  • Lee, Dugro;Park, Ju-Derk;Choi, Jae-Ic;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2004
  • In this paper, power density in near field is calculated about analytic object which has comparatively large volume in considering used wavelength such as cellular base station antenna. Panel sector antenna which is used widespreadly in domestic cellular wireless communication system is modeled and electromagnetic field distribution in reactive near field region is calculated by FDTD (Finite Difference Time Domain) method. After that, antenna gain in far field region is obtain by near to far transformation. Power spectral density in radiated near field is calculated in applying to gain-based model with antenna gain in far field. Finally, compliance distance is obtained in considering the result from radiated near field calculation and basic restrictions on occupational and general public exposure limits in ICNIRP guideline. In the center of main radiating position, the result from gain-based model is -14.55 ㏈m and the result from surface scanning method is -15.75 ㏈m. When the losses from cables and connectors used in measurement are considered, the results from gain-based model and surface scanning method are nearly coincident.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case - (실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 -)

  • Jang, Hyuk Soo;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.15-26
    • /
    • 2014
  • This study focus on a economic value of the Big Data technologies by real options model using big data technology company's stock price to determine the price of the economic value of incremental assessed value. For estimating stochastic process of company's stock price by big data technology to extract the incremental shares, Generalized Moments Method (GMM) are used. Option value for Black-Scholes partial differential equation was derived, in which finite difference numerical methods to obtain the Big Data technology was introduced to estimate the economic value. As a result, a option value of big data technology investment is 38.5 billion under assumption which investment cost is 50 million won and time value is a about 1 million, respectively. Thus, introduction of big data technology to create a substantial effect on corporate profits, is valuable and there are an effects on the additional time value. Sensitivity analysis of lower underlying asset value appear decreased options value and the lower investment cost showed increased options value. A volatility are not sensitive on the option value due to the big data technological characteristics which are low stock volatility and introduction periods.