• Title/Summary/Keyword: Finite-difference

Search Result 3,273, Processing Time 0.031 seconds

Characteristics of Bio-impedance for Implantable Electrode Design in Human Skin (인간 피부에 삽입형 전극설계를 위한 생체임피던스 특성)

  • Kim, Min Soo;Cho, Young-Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • Electrode contact resistance is a crucial factor in physiological measurements and can be an accuracy limiting factor to perform electrical impedance measurements. The electrical bio-impedance values can be calculated by the conductivity and permittivity of underlying tissue using implant electrode in human skin. In this study we focus on detecting physiological changes in the human skin layers such as the sebum layer, stratum corneum layer, epidermis layer, dermis layer, subcutaneous fat and muscle. The aim of this paper is to obtain optimal design for implantable electrode at subcutaneous fat layer through the simulation by finite element methods(FEM). This is achieved by evaluating FEM simulations geometrically for different electrodes in length(50 mm, 70 mm), in shape(rectangle, round square, sexangle column), in material(gold) and in depth(22.325 mm) based on the information coming from the subcutaneous fat layer. In bio-impedance measurement experiments, according to electrode shapes and applied voltage, we have ascertained that there was the highest difference of bio-impedance in subcutaneous fat layer. The methodology of simulation can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation.

Application of Two-Dimensional Boundary Condition to Three-Dimensional Magnetotelluric Modeling (3차원 MT 탐사 모델링에서 2차원 경계조건의 적용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.318-325
    • /
    • 2008
  • Assigning an exact boundary condition is of great importance in three-dimensional (3D) magnetotelluric (MT) modeling, in which no source is considered in a computing domain. This paper presents a 3D MT modeling algorithm utilizing a Dirichlet condition for a 2D host. To compute boundary values for a model with a 2D host, we need to conduct additional 2D MT modeling. The 2D modeling consists of transverse magnetic and electric modes, which are determined from the relationship between the polarization of plane wave and the strike direction of the 2D structure. Since the 3D MT modeling algorithm solves Maxwell's equations for electric fields using the finite difference method with a staggered grid that defines electric fields along cell edges, electric fields are calculated at the same place in the 2D modeling. The algorithm developed in this study can produce reliable MT responses for a 3D model with a 2D host.

Helicopter-borne and ground-towed radar surveys of the Fourcade Glacier on King George Island, Antarctica (남극 킹조지섬 포케이드 빙하의 헬리콥터 및 지상 레이다 탐사)

  • Kim, K.Y.;Lee, J.;Hong, M.H.;Hong, J.K.;Shon, H.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • To determine subglacial topography and internal features of the Fourcade Glacier on King George Island in Antarctica, helicopter-borne and ground-towed ground-penetrating radar (GPR) data were recorded along four profiles in November 2006. Signature deconvolution, f-k migration velocity analysis, and finite-difference depth migration applied to the mixed-phase, single-channel, ground-towed data, were effective in increasing vertical resolution, obtaining the velocity function, and yielding clear depth images, respectively. For the helicopter-borne GPR, migration velocities were obtained as root-mean-squared velocities in a two-layer model of air and ice. The radar sections show rugged subglacial topography, englacial sliding surfaces, and localised scattering noise. The maximum depth to the basement is over 79m in the subglacial valley adjacent to the south-eastern slope of the divide ridge between Fourcade and Moczydlowski Glaciers. In the ground-towed profile, we interpret a complicated conduit above possible basal water and other isolated cavities, which are a few metres wide. Near the terminus, the GPR profiles image sliding surfaces, fractures, and faults that will contribute to the tidewater calving mechanism forming icebergs in Potter Cove.

A Study for the Applicable Bearing-Resistance of Bearing Anchor in the Enlarged-Borehole (지압형 앵커의 지압력 산정에 관한 실험적 연구)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Jung, Chan-Muk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • An almost permanent anchor (friction type) is resistant to ground deformation due to the friction between the soil and grout at a fixed length from the anchor body. The purpose of this study is to calculate the force of bearing resistance for a bearing anchor in enlarged boreholes. We conducted analytical and numerical analyses, along with laboratory testing, to find the quantities of bearing resistance prior to grouting in EBA (Enlarged Bearing Anchor) construction. The force of bearing resistance from the analytical method was defined as a function of general borehole diameter, expanded borehole diameter, and soil unconfined compressive strength. We also employed the Flac 3D finite difference numerical modeling code to analyze the bearing resistance of the soil conditions. We then created a laboratory experimental model to measure bearing resistance and carried out a pull-out test. The results of these three analyses are presented here, and a regression analysis was performed between bearing resistance and uniaxial compression strength. The laboratory results yield the strongest bearing resistance, with reinforcement 28.5 times greater than the uniaxial compression strength; the analytical and numerical analyses yielded values of 13.3 and 9.9, respectively. This results means that bearing resistance of laboratory test appears to be affected by skin friction resistance. To improve the reliability of these results, a comparison field study is needed to verify which results (analytical, numerical, or laboratory) best represent field observations.

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.