• Title/Summary/Keyword: Finite-difference

Search Result 3,280, Processing Time 0.027 seconds

Time-domain coupled analysis of curved floating bridge under wind and wave excitations

  • Jin, Chungkuk;Kim, MooHyun;Chung, Woo Chul;Kwon, Do-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.399-414
    • /
    • 2020
  • A floating bridge is an innovative solution for deep-water and long-distance crossing. This paper presents a curved floating bridge's dynamic behaviors under the wind, wave, and current loads. Since the present curved bridge need not have mooring lines, its deep-water application can be more straightforward than conventional straight floating bridges with mooring lines. We solve the coupled interaction among the bridge girders, pontoons, and columns in the time-domain and to consider various load combinations to evaluate each force's contribution to overall dynamic responses. Discrete pontoons are uniformly spaced, and the pontoon's hydrodynamic coefficients and excitation forces are computed in the frequency domain by using the potential-theory-based 3D diffraction/radiation program. In the successive time-domain simulation, the Cummins equation is used for solving the pontoon's dynamics, and the bridge girders and columns are modeled by the beam theory and finite element formulation. Then, all the components are fully coupled to solve the fully-coupled equation of motion. Subsequently, the wet natural frequencies for various bending modes are identified. Then, the time histories and spectra of the girder's dynamic responses are presented and systematically analyzed. The second-order difference-frequency wave force and slowly-varying wind force may significantly affect the girder's lateral responses through resonance if the bridge's lateral bending stiffness is not sufficient. On the other hand, the first-order wave-frequency forces play a crucial role in the vertical responses.

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core (중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구)

  • Kim, Jeong I.
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.

Spark Plasma Sintering Method to Replace Carburizing Process (침탄 공정 대체를 위한 방전 플라즈마 소결 방법)

  • Jeon, Junhyub;Lee, Junho;Seo, Namhyuk;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • An alternative fabrication method for carburizing steel using spark plasma sintering (SPS) is investigated. The sintered carburized sample, which exhibits surface modification effects such as carburizing, sintered Fe, and sintered Fe-0.8 wt.%C alloys, is fabricated using SPS. X-ray diffraction and micro Vickers tests are employed to confirm the phase and properties. Finite element analysis is performed to evaluate the change in hardness and analyze the carbon content and residual stress of the carburized sample. The change in the hardness of the carburized sample has the same tendency to predict hardness. The difference in hardness between the carburized sample and the predicted value is also discussed. The carburized sample exhibits a compressive residual stress at the surface. These results indicate that the carburized sample experiences a surface modification effect without carburization. Field emission scanning electron microscopy is employed to verify the change in phase. A novel fabrication method for altering the carburization is successfully proposed. We expect this fabrication method to solve the problems associated with carburization.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

Optimization of FPGA-based DDR Memory Interface for better Compatibility and Speed (호환성 및 속도 향상을 위한 FPGA 기반 DDR 메모리 인터페이스의 최적화)

  • Kim, Dae-Woon;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1914-1919
    • /
    • 2021
  • With the development of advanced industries, research on image processing hardware is essential, and timing verification at the gate level is required for actual chip operation. For FPGA-based verification, DDR3 memory interface was previously applied. But recently, as the FPGA specification has improved, DDR4 memory is used. In this case, when a previously used memory interface is applied, the timing mismatch of signals may occur and thus cannot be used. This is due to the difference in performance between CPU and memory. In this paper, the problem is solved through state optimization of the existing interface system FSM. In this process, data read speed is doubled through AXI Data Width modification. For actual case analysis, ZC706 using DDR3 memory and ZCU106 using DDR4 memory among Xilinx's SoC boards are used.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Applicability of Pseudostatic Analysis for the Seismic Design of Temporary Retaining Structures in a Deep Excavation (흙막이 가시설 내진설계를 위한 등가정적해석의 유효성 분석)

  • Yu, Sang-Hwa;Kim, Dong-Chan;Kim, Jongkwan;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.35-50
    • /
    • 2023
  • A preliminary study is conducted to develop seismic design guidelines for temporary retaining structures in a deep excavation. The study involved a comprehensive literature review of the seismic design standards applied domestically and internationally, as well as various methods to calculate seismic earth pressure for pseudostatic analysis. The FLAC 2D, a two-dimensional finite difference analysis program, was utilized to perform pseudostatic analysis using the Semirigid pressure method, Wood method, and Mononobe-Okabe method. The resulting analysis data for the wall moment and axial force of the strut were compared with the dynamic analysis outcomes to evaluate the applicability of pseudostatic analysis. The Semirigid pressure method predicted the most reasonable moment for Stiff walls experiencing horizontal displacements up to 0.4%H. Predicting the axial force of the strut exactly was challenging because the pseudostatic analysis cannot consider dynamic soil-structure interaction; however, it is deemed available for conservative preliminary review to ensure safety.

End Bearing Load Transfer Behavior of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 선단하중전이거동 분석)

  • Cho, Hoo-Yeon;Jung, Sang-Sum;Seol, Hoon-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.77-93
    • /
    • 2009
  • The load distribution and deformation of rock socketed drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was laid on quantifying the end bearing load transfer characteristics of rock socketed drilled shafts based on 3D Finite Difference (FD) analysis performed under varying rock strength and rock mass conditions. From the results of FD analysis, it was found that the ultimate unit toe resistance ($q_{max}$) was influenced by both rock strength and rock mass conditions, while the initial tangent of end bearing load transfer curve ($G_{ini}$) was only dependent on rock strength. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the FD analysis and the field loading tests which were performed on weathered rock in South Korea. Through the comparison with the results of the field loading tests, it is found that the load transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer behavior of drilled shaft.