• Title/Summary/Keyword: Finite strain plasticity

Search Result 451, Processing Time 0.027 seconds

Evolution of shear texture during hot rolling of AA1050 aluminum sheet. (AA1050 알루미늄 합금의 열간 압연 시 전단집합조직의 형성)

  • Hang, G.C.;Kim, H.C.;Huh, M.Y.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • The effect of lubrication on the development of textures and Microstructure was studied by different lubricating condition during hot rolling of AA1050 aluminum alloy. Hot rolling without lubrication led to the evolution of the pronounced through-thickness texture gradients, whereas hot rolling with lubrication gave rise to the formation of uniform rolling texture in the whole thickness layer. The variation of texture and microstructure according to hot rolling condition are investigated by X-ray diffractometer (XRD) and Electron Back-Scattered Diffraction (EBSD). The experimental results were discussed base on the finite element method (FEM) simulation. FEM calculation reveals that a larger friction between roll and sheet causes the deviated strain state from a plane strain leading to the formation of shear textures in the thickness layers close to the surface.

  • PDF

Microstructure and Tensile Properties of Ultrafine Grain Pure-Titanium (초미세립 순-타이타늄의 미세조직과 인장물성)

  • Ko, Y.G.;Ahn, J.Y.;Shin, D.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.215-218
    • /
    • 2006
  • A study was made to investigate microstructural evolution and mechanical properties of ultra-fine grained (UFG) pure-Ti produced by equal channel angular (ECA) pressings. The deformed structures were analyzed by finite element method and transmission electron microscopy with the increment of straining. After 4 isothermal ECA pressings, initial coarse grains ($30{\mu}m$) were significantly refined to ${\sim}0.3{\mu}m$ with homogeneous distribution of microstructure which was resulted from $180^{\circ}$ rotation of the sample between pressings. UFG pure-Ti exhibited the considerable improvement in yield strength while losing strain hardening capacity as compared to coarse grained microstructure at ambient temperature, which was mainly attributed to ultra-fine grain microstructure with non-equilibrium grain boundaries.

  • PDF

A Study On The Microstructural Evolution In Hot Rolling (열간압연중 발생하는 미세조직 변화에 관한 연구)

  • 조현중;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.16-29
    • /
    • 1995
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical mathematical equations suggested by different research groups were used together to form an integrated system of process and microstructure simulation of hot rolling. The distribution and time history of thermomechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained FEM analysis of multipass hot rolling processes. Then distribution of metallurgical variables were calculated successfully on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in literature. Consequently, this approach makes it passible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.76-79
    • /
    • 1999
  • The study has been performed for the relation between die and product in forward extrusion by the experiment. Strains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die and the history of the deformation of the die and product is given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful results for the deformation history of the die and product through the experiment and Lame's formula at forward extrusion for solid cylinder and can be applied to the die design for product with accurate dimension.

  • PDF

A Development of Wet-based Virtual Press (웹 기반의 가상 프레스 개발)

  • 정완진;장동영;이학림;최석우;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.121-124
    • /
    • 2002
  • This paper resents a virtual forming system to simulate deep drawing process for stress-strain information by utilizing virtual system designed using Virtual Reality Modeling Language (VRML) and computer aided analysis (CAE) tool. The CAE tool to calculate stress, strain, and deformation is designed using Finite Element Method. Stress distributions and deformation profiles as well as the operation of forming machine can be simulated and visualized in the web. The developed system consists of three modules, input module, virtual forming machine module, and output module. The input nodule was designed using HTML and ASP. The input data for FEM calculation is directed to the forming machine module for calculation. The results from the forming machine module can be visualized through output module as well as the forming process simulation.

  • PDF

Optimization of the Tool Geometry of Plane Strain Punch Stretching Test (평면변형률 장출 실험용 금형의 최적설계)

  • 하동호;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.158-163
    • /
    • 1997
  • In this paper the tool geometry of the PSS test were optimized in order to assure the reliability of the test. Considering many factors for optimization of the tool geometry, computer-simulation technique using three-dimensional finite element method(FEM) was used. Three design variables -the punch length, punch crown and punch corner radius- are chosen to be optimized according to the Taguchi's experiment technique with the L9 orthogonal array. The optimum condition to ensure the plane strain mode over the overall area of the specimen was clarified. Moreover the simulation results are confirmed by experiment.

  • PDF

SELECTED ADVANCES IN SHEET MATERIAL FORMING

  • Lee, Daeyong-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.1-9
    • /
    • 1994
  • Three recent developments made at Rensselaer in sheet material forming processes are briefly reviewed in this paper. These advances represent three broad disciplines of Process Simulation, Forming Processes, and Computer-Aided Measurement Methods. The first development deals with simple and quick computer simulation of 2D sheet forming process without depending on popular finite element analysis methods. An analytical method based on a thin shell theory accounts for bending and unbending effects, and is capable of simulating practical sheet metal forming processes under the plane strain condition. The second area is concerned with innovative methods to improve formability of sheet materials by temperature gradient forming. The drawing limit is increased by such an improved temperature gradient forming process. The third and final area deals with a totally new experimental technique to capture 3D geometry data and measure strain distributions of sheet metal parts using a digital 35mm SLR camera.

FE analysis of Al sheet metal considering planar anisotropy (평면이방성을 고려한 알루미늄 판재의 유한요소해석)

  • 윤정환;양동열;송인섭;정관수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.44-54
    • /
    • 1994
  • A variational formulation and the associated finite elemet equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by BARLAT et al [13]. By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes are considered efficiently. In order to check the validity of present formulation, a cylindrical cup and a square cup deep drawing test was modeled. good agreement was found between the FE simulation and the experiment. The results have shown that the present formulation for planar anisotropic deformation can be efficiently applied to the analysis of sheet metal working processes for planar anisotropic nonferrous metals.

  • PDF

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

Understanding the Effect of Friction Coefficient on Strain Distribution in Cu-0.2wt%Mg Alloy during Wire Drawing using Finite Element Analysis (유한요소해석을 이용한 인발 공정 시 Cu-0.2wt%Mg 합금의 변형률 분포에 미치는 마찰계수 영향의 이해)

  • T. H. Yoo;S. W. Baek;J. H. Kim;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In the case of a wire with a very fine diameter during the multi-stage drawing process, the heterogeneity of the deformation in the radial direction tends to develop strongly as the amount of deformation is accumulated. It is known that the heterogeneity of deformation in the radial direction of the wire is closely related to the process parameters during the multi-stage drawing process. In this study, finite element analysis (FEA) was used to theoretically examine the effect of friction between the surface of the wire and the drawing die during the multi-stage drawing process of Cu-0.2wt%Mg alloy on the deformation heterogeneity developed in the radial direction of the wire. The distribution of effective strain, radial strain, circumferential strain, and shear strain developed in the radial direction of the wire during the multi-stage drawing process was analyzed while changing the friction coefficient, and the results were analyzed and compared for each path and position. The FEA results revealed that the shear strain developed in the radial direction of the wire during the multi-stage drawing process of Cu-0.2wt%Mg alloy showed the most non-uniform distribution and was also severely affected by the friction coefficient.