• 제목/요약/키워드: Finite population mean

검색결과 30건 처리시간 0.018초

Generalized Ratio-Cum-Product Type Estimator of Finite Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Lone, Hilal A.;Pandey, Rajiv
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.255-264
    • /
    • 2015
  • This paper addressed the problem of estimation of finite population mean in double sampling for stratification. This paper proposed a generalized ratio-cum-product type estimator of population mean. The bias and mean square error of the proposed estimator has been obtained upto the first degree of approximation. A particular member of the proposed generalized estimator was identified and studied from a comparison point of view. It is observed that the identified particular estimator is more efficient than usual unbiased estimator and Ige and Tripathi (1987) estimators. An empirical study was conducted in support of the theoretical findings.

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling with Auxiliary Information

  • Kim, Dal-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제27권3호
    • /
    • pp.331-348
    • /
    • 1998
  • In this paper, we have proposed some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean in the presence of auxiliary information. These estimators are compared with the classical ratio estimator and a subjective Bayes estimator utilizing the auxiliary information in terms of "posterior robustness" and "procedure robustness" Also, we have addressed the issue of choice of sampling design from a robust Bayesian viewpoint.

  • PDF

Ratio and Product Type Exponential Estimators of Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Chouhan, Sunil;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper discusses the problem of estimation of finite population mean in double sampling for stratification. In fact, ratio and product type exponential estimators of population mean are proposed in double sampling for stratification. The biases and mean squared errors of proposed estimators are obtained upto the first degree of approximation. The proposed estimators have been compared with usual unbiased estimator, ratio and product estimators in double sampling for stratification. To judge the performance of the proposed estimators an empirical study has been carried out.

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling

  • Dal Ho Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.63-73
    • /
    • 1995
  • We consider some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean. The proposed estimators are compared with the sample mean and subjective Bayes estimators in terms of "posterior robustness" and "procedure robustness".re robustness".uot;.

  • PDF

Bayesian inference in finite population sampling under measurement error model

  • Goo, You Mee;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1241-1247
    • /
    • 2012
  • The paper considers empirical Bayes (EB) and hierarchical Bayes (HB) predictors of the finite population mean under a linear regression model with measurement errors We discuss how to calculate the mean squared prediction errors of the EB predictors using jackknife methods and the posterior standard deviations of the HB predictors based on the Markov Chain Monte Carlo methods. A simulation study is provided to illustrate the results of the preceding sections and compare the performances of the proposed procedures.

A Generalized Ratio-cum-Product Estimator of Finite Population Mean in Stratified Random Sampling

  • Tailor, Rajesh;Sharma, Balkishan;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.111-118
    • /
    • 2011
  • This paper suggests a ratio-cum product estimator of a finite population mean using information on the coefficient of variation and the fcoefficient of kurtosis of auxiliary variate in stratified random sampling. Bias and MSE expressions of the suggested estimator are derived up to the first degree of approximation. The suggested estimator has been compared with the combined ratio estimator and several other estimators considered by Kadilar and Cingi (2003). In addition, an empirical study is also provided in support of theoretical findings.

A Bayesian Approach to Finite Population Sampling Using the Concept of Pivotal Quantity

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.647-654
    • /
    • 2003
  • Bayesian probability models for finite populations are considered assuming so-called the super-population. We find the posterior distribution of population mean by a new approach, using the concept of pivotal quantity for the small sample case. A large sample theory is also treated throught the concept of asymptotically pivotal quantity.

Robust Bayesian Inference in Finite Population Sampling under Balanced Loss Function

  • Kim, Eunyoung;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제21권3호
    • /
    • pp.261-274
    • /
    • 2014
  • In this paper we develop Bayes and empirical Bayes estimators of the finite population mean with the assumption of posterior linearity rather than normality of the superpopulation under the balanced loss function. We compare the performance of the optimal Bayes estimator with ones of the classical sample mean and the usual Bayes estimator under the squared error loss with respect to the posterior expected losses, risks and Bayes risks when the underlying distribution is normal as well as when they are binomial and Poisson.

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

Some efficient ratio-type exponential estimators using the Robust regression's Huber M-estimation function

  • Vinay Kumar Yadav;Shakti Prasad
    • Communications for Statistical Applications and Methods
    • /
    • 제31권3호
    • /
    • pp.291-308
    • /
    • 2024
  • The current article discusses ratio type exponential estimators for estimating the mean of a finite population in sample surveys. The estimators uses robust regression's Huber M-estimation function, and their bias as well as mean squared error expressions are derived. It was campared with Kadilar, Candan, and Cingi (Hacet J Math Stat, 36, 181-188, 2007) estimators. The circumstances under which the suggested estimators perform better than competing estimators are discussed. Five different population datasets with a well recognized outlier have been widely used in numerical and simulation-based research. These thorough studies seek to provide strong proof to back up our claims by carefully assessing and validating the theoretical results reported in our study. The estimators that have been proposed are intended to significantly improve both the efficiency and accuracy of estimating the mean of a finite population. As a result, the results that are obtained from statistical analyses will be more reliable and precise.