• Title/Summary/Keyword: Finite ground

Search Result 1,004, Processing Time 0.025 seconds

Probabilistic sensitivity analysis of suspension bridges to near-fault ground motion

  • Cavdar, Ozlem
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.15-39
    • /
    • 2013
  • The sensitivities of a structural response due to variation of its design parameters are prerequisite in the majority of the algorithms used for fundamental problems in engineering as system uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges have significant structural response modes. Two different types of suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and responses obtained from the two different suspension bridges subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity information provides a deeper insight into the structural design and it can be used as a basis for decision-making.

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

A Prediction Method for Ground Surface Settlement During Shield Tunneling in Cohesive Soils (점성토 지반에서의 실드 터널 시공에 따른 지표침하 예측 기법)

  • Yoo, Chung-Sik;Lee, Ho
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.107-122
    • /
    • 1997
  • This paper presents a ground surface settlement prediction method for shield tunneling in cohesive soils. In order to develop the method, a parametric study on shield tunneling was performed by using a threetimensional elasto-plastic finite element analysis, which can simulate the construction procedure. By using the results of the finite element analysis, the ground movement mechanism was investigated and a base which relates the ground surface settlement and iuluencing factors was formed. The data base was then used to formulate semi -empirical equations for both surface settlement ratio above tunnel face and imflection point by means of a regression analysis. Furthermore, a prediction method for transverse and longitudinal surface settlement profiles was suggested by using the leveloped equations in conjunction with the normal probability curve. Effectiveness of the developed method was illustrated by comparing settlement profiles obtained by using the developed method with the results of finite element analysis and measured data. Based on the comparison, it was concluded that the developed method can be effectively rosed for practical applications at least within the conditions investigated.

  • PDF

A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis (역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구)

  • Hwang, Sungpil;Im, Jongchul;Kwon, Jeonggeun;Kang, Yeounike;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.5-14
    • /
    • 2010
  • The paper processed settlement analysis using Finite Elements Method(FEM). Because Stress Distribution Ratio has to be decreased, for settlement analysis of soft clay deposit improved by sand compaction piles(SCP). Back analysis was processed comparing the measured settlements of laboratory model tests and finite element analysis where the SCP treated area was assumed as mixed ground with clay deposit rather than being a composite ground. The paper proposes a methodology which employs a compression index($C_c$) for settlement analysis of soft clay deposit improved by sand compaction piles from the back analysis. This approach is applied to a field measurement case(A revetment founded on the SCP improved clay deposit with the replacement ratio of 45%).

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF

Ultra-Wideband Microstrip-to-Finite Ground Coplanar Waveguide Transition for Millimeter-Wave Systems (밀리미터파 시스템용 초광대역 마이크로스트립-FGCPW 전이구조 설계)

  • Kim, Young-Gon;Kim, Hong-Rak;Jung, Bae-Ho;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.701-708
    • /
    • 2016
  • A new design for an ultra-wideband microstrip-to-FGCPW(Finite Ground Coplanar Waveguide) transition is presented. The proposed transition provides the electric field and impedance matching between adjacent transmission lines by ground shaping. The transition is designed on the analytical expressions of whole transitional structure. Conformal mapping is applied to obtain the characteristic impedance of FGCPW with bottom aperture within 3.3 % accuracy as compared with the EM-simulation results. As design example, the fabricated transition in back-to-back configuration provides insertion loss less than 1 dB per transition and return loss better than 10 dB for frequencies from 9 GHz to over 40 GHz.

Post-earthquake Assessment of Mission-Gothic Undercrossing

  • Lou, K.Y.;Ger, J.F.;Yang, R.J.;Cheng, F.Y.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Collapse behavior of Mission-Gothic Undercrossing under Northridge earthquake is studied by performing nonlinear time-history analysis and three-dimensional nonlinear finite element method for flared columns. Bridge structural model is characterized as three-dimensional with consideration of columns, superstructures, and abutment conditions. Three components of ground motion, corresponding to bridge's longitudinal, transverse, and vertical direction and their combinations are used to investigate bridge collapse. Studies indicate that bridge collapse is dominantly caused by transverse ground motion and the consideration of three-dimensional ground motion leads to a more accurate assessment. Failure mechanism of flared columns is analyzed applying nonlinear finite element method. Reduction of column capacity is observed due to orientation of flare. Further investigation demonstrates that the effects of flare play an important role in predicting of bridge failure mechanism. Suggestions are offered to improve the performance of bridges during severe earthquake.

  • PDF

Determination of K values from tunnel model tests in sandy ground (터널모형실험을 통한 사질토 지반에서의 K값의 산정)

  • Lee, Yong-Joo;Ryu, Chang-Youl
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.87-94
    • /
    • 2010
  • This study mainly focused on the subsurface settlement due to shallow and deep tunneling in sandy ground. In order to figure out theoretical deformation patterns in association with the ground loss during the progress of tunneling, laboratory model tests using aluminum rods and finite element analyses using the CRISP program were carried out. As a result of comparison between the model test and the finite element analysis, the similar deformation patterns were found. In addition, it was identified that the most K values obtained from both the FEA and the model tests were distributed between Dyer et al. (1996) and Moh et al. (1996) of the field observation data. Based on the model test data, the linear equation of K for the sandy soil could be obtained.

The Fluid Loss and Sealing Mechanisms in Slurry Trench Condition (II) : Finite Element Models of Fluid Loss for a Slurry Trench (Slurry wall 공법에서 안정액의 역할 (II) : 유한요소해석법 적용)

  • Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.249-256
    • /
    • 2002
  • The stability of slurry trench system is closely associated with the characteristics of the filter cake (assumed impervious membrane) transferring the hydrostatic force of slurry to the trench walls. The effectiveness of this assumption in a wide range of trench systems has been examined with the aid of a Finite Element program. Build up of excess porewater pressure in the soil mass behind the filter cake is a function of the slurry density, the properties of filter cake, the ground conditions, time, the geometry of trench and the original ground water level. These factors were all investigated by the Finite Element Method. The most significant factors were found to be the ground conditions and the properties of filter cake.

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.