• Title/Summary/Keyword: Finite fault

Search Result 214, Processing Time 0.035 seconds

Simplified Impedance Modeling and Analysis for Inter-Turn Fault of IPM-type BLDC motor

  • Kim, Byeong-Woo;Kim, Kyung-Tae;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM)-type BLDC motor having stator inter-turn faults. We also propose impedance modeling of the magnetic characteristics. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the distributed characteristics of an inter-turn fault operated by a six-switch inverter are investigated considering speed control. Moreover, this paper presents the flux density distribution and torque characteristics for analyzing the inter-turn fault of an IPM-type BLDC motor. Additionally, fault impedance is required to calculate the circulating current that causes magnetic distortion. Thus, this paper proposes a method for estimating the circulating current taking into account the voltage at the shorted turn and the rotating speed. The analysis data were verified experimentally.

A Biologically Inspired New Hardware Fault Detection: immunotronic and Genetic Algorithm-Based Approach

  • Lee, Sanghyung;Kim, Euntai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • This paper proposes a new immunotronic approach for the fault detection in hardware. The suggested method is, inspired by biology and its implementation is based on genetic algorithm. Tolerance conditions in the immunotronic system for fault detection correspond to the antibodies in the biological immune system. A novel algorithm of generating tolerance conditions is suggested based on the principle of the antibody diversity and GA optimization is employed to select mature tolerance conditions in immunotronic fault detection system. The suggested method is applied to the fault detection for MCNC benchmark FSMs (finite state machines) and its effectiveness is demonstrated by the computer simulation.

Early Detection Technique in IPM-type Motor with Stator-Turn Fault using Impedance Parameter (임피던스 성분을 이용한 매입형 영구자석 전동기의 고정자 절연파괴 고장의 초기 검출 기법)

  • Jeong, Chae-Lim;Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.612-619
    • /
    • 2013
  • This paper proposes an early diagnosis technique for the stator-turn fault (STF) in an interior permanent magnet (IPM)-type brushless DC (BLDC) motor using the impedance parameter. We have analyzed the varying characteristics owing to the STF through various experiments and the finite element method (FEM). As a result, we have presented a simple method for fault detection. This technique can be applied without requiring a fast Fourier transform (FFT) and the calculation of the negative-sequence impedance. The fault detection system works on the basis of the comparison the measured impedance with the database impedance. The variations in the characteristics owing to the STF as well as the proposed technique have been verified through the simulation and experiment.

Analysis on Air-Gap Magnetic Flux of Synchronous Generator According to Short-Circuit Types in Winding (권선단락 유형별 동기발전기의 공극자속 파형 분석)

  • Bae, Duck-Kweon;Kim, Dong-Hun;Park, Jung-Shin;Lee, Dong-Young;Lee, Sung-Ill
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.929-935
    • /
    • 2009
  • As modem industrialized society progresses, the demand for electric power is increasing rapidly. The electric power system is getting amazingly bigger and complicated, which can easily induce serious troubles from the potential of large fault problems and/or system failure. The monitoring and diagnosis of the electric machine for the fault detection and protection has been important part in the electric power system. Most faults in the generator appear in the winding. This paper presents the air-gap magnetic flux characteristic of a small-scale 2-pole synchronous generator according to the faults in the field winding to protect the generator from the fault. The magnetic flux patterns in air-gap of a generator under various fault conditions as well as a normal state are simulated by using finite element method. These results are successfully applied to the detection and diagnosis of the short-circuit condition in rotor windings of a high capacitor generator.

The Comparative Study for Software Reliability Model Based on Finite and Infinite Failure Property using Rayleigh Distribution (레일리분포를 이용한 유한고장과 무한고장 소프트웨어 신뢰성 모형에 대한 비교연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.277-284
    • /
    • 2014
  • The NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, finite failure NHPP models that assuming the expected value of the defect and infinite failures NHPP models that repairing software failure point in time reflects the situation, were presented for comparing property. Commonly used in the field of software reliability based on Rayleigh distribution software reliability model finite failures and infinite failures were presented for comparison problem. As a result, infinite fault model is effectively finite fault models, respectively. The parameters estimation using maximum likelihood estimation was conducted. In this research, can be able to help software developers for considering software failure property some extent.

The Comparative Study for Software Reliability Model Based on Finite and Infinite Failure Exponential Power NHPP (유한 및 무한고장 지수파우어 NHPP 소프트웨어 신뢰성모형에 대한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, finite failure NHPP models that assuming the expected value of the defect and infinite failures NHPP models that repairing software failure point in time reflects the situation, were presented for comparing property. Commonly used in the field of software reliability based on exponential power distribution software reliability model finite failures and infinite failures were presented for comparison problem. As a result, finite fault model is effectively infinite fault models, respectively. The parameters estimation using maximum likelihood estimation was conducted. In this research, software developers to identify software failure property some extent be able to help is considered.

A Method for Offline Inter-Turn Fault Diagnosis of Interior Permanent Magnet Synchronous Motor through the Co-Analysis (연동해석을 통한 영구자석 동기전동기의 오프라인 Inter-Turn 고장진단법)

  • Cho, Sooyoung;Oh, Ye Jun;Lee, GangSeok;Bae, Jae-Nam;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.365-373
    • /
    • 2018
  • In this paper, inter-turn fault diagnosis of the interior permanent magnet synchronous motor (IPMSM) is performed in offline state by linking the finite element analysis (FEA) tool and control simulation tool. In order to diagnose the inter-turn fault, it is important to select the current value to determine the fault. First, the basic principles for inter-turn fault diagnosis of IPMSM are explained and co-analysis model for fault diagnosis is constructed. Further, in order to select the appropriate high frequency voltage, the change of the current value to be judged as failure was analyzed at various voltage and frequency conditions, and the change of the current value according to the number of the failed windings was analyzed. Finally, the current value to be judged as failure is selected.

Design and implementation of simulator for fault coverage analysis of commuication protocol test case (통신 프로토콜 시험항목의 오류 발견 능력 분석을 위한 시뮬레이터의 설계 및 구현)

  • 김광현;허기택;이동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1823-1832
    • /
    • 1997
  • In this ppaer, fault coverage analysis of a conformance test case for communication protocols, specified as a deterministic finite state machine(DFSM) is presented. The fault coverage analysis of a test case is defined by measuring the extent of the faults detected using a generated test case. The method that evaluates fault coverage analysis for a test case, has been researched by arithmetic analysis and simulation. In this paper, we designed and implemented a simulator for fault coverage analysis of a communication protocol teat case. With this result for Inres protocol, output fault and state merge and split fault have a high fault coverage of 100%. This simulator can be widely used with new fault coverage analysis tools by applying it to various protocols.

  • PDF

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.