• Title/Summary/Keyword: Finite element program

Search Result 2,114, Processing Time 0.025 seconds

Finite Element Analysis of Magnetostrictive Linear Actuator (자왜재료를 이용한 선형 작동기의 유한요소 해석)

  • Kim, Yoon-Chang;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

Densification Analysis for SiC Powder under Cold Compaction (냉간압축 하에서 실리콘 카바이드 분말의 치밀화해석)

  • Park, Hwan;Kim, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2000
  • Densification behavior of SiC powder was investigated under cold compaction. A special form of the Cap model was proposed from experimental data of SiC powder under triaxial compression. To compare with experimental data of SiC powder under cold compaction, the proposed constitutive model was implemented into a finite element program (ABAQUS). Finite element calculations from the Cam-Clay model and the modified Drucker-Prager model were also compared with experimental data of SiC powder. The agreements between experimental data and finite element results obtained from the proposed constitutive model are reasonably good. In die pressing, finite element results obtained from the Cam-Clay model and the modified Drucker-Prager model, however, show lower average density of SiC powder compacts compared to experimental data.

  • PDF

A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing (온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Ki-Tae;Yang, Hoon-Chul;Kim, Jong-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures (Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동)

  • Hong, Seung-Taek;Kim, Gi-Tae;Yang, Hun-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1124-1132
    • /
    • 2000
  • Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.

A Study of Finite Element Analysis for Semi-Solid Forging (반용융단조 공정의 유한요소해석에 관한 연구)

  • 이주영;김낙수;김중재
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.159-164
    • /
    • 1997
  • The optimal conditions were investigated in order to manufacture the light automotive body parts using the semi-solid forging process by the finite element nalysis. Considering about macro-segregation cause to difference of relative velocity between solid phase and liquid phase, solidificational phenomenon cause to heat transfer from die and export of the latent heat, so solid fraction updating algorithm can be proposed. The rigid thermo-viscoplastic finite element analysis was carried out according to die temperature with proposed algorithm, so availability of forming part were understood. The finite element program can be used to the analysis of semi solid forging process.

  • PDF

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of square die extrusion based on ALE description (강-점소성 ALE 유한요소 수식화에 근거한 3차원 평금형 형재 압출의 해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.150-156
    • /
    • 1995
  • In the finite element analysis of metal forming processes, the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. However some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work, a ALE(arbitrary Lagrangian-Eulerian) finite element formulation for deformation analysis are presented for rigid viscoplastic materials. The developed finite element program is applied to the analysis of square die extrusion of a square section. The computational results are compared with those from the updated Lagrangian finite element analysis.

  • PDF

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

Prediction for Weather Strip Using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 웨더스트립의 특성예측)

  • Jang, Wang-Jin;Han, Chang-Yong;Woo, Chang-Su;Lee, Seong-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1022-1027
    • /
    • 2008
  • TPE is used as alternative for rubber, the best example is the weather strip for automobile. The nonlinear material properties of weather strip were important to predict the behaviors of weather strip. Uniaxial tension and equi-biaxial tension tests were performed to achieve the nonlinear material constant and stress-strain curves. The nonlinear material constant of weather strip is evaluated by using the nonlinear finite element analysis. In this paper, the prediction for weather strip is analyzed by using commercial finite element program, ANSYS. The nonlinear finite element analysis of weather strip is executed to predict the behavior of weather strip for automobile.

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.