• Title/Summary/Keyword: Finite element methods

Search Result 2,239, Processing Time 0.032 seconds

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

A study on the interpretations of tunnel convergence function parameters (터널 내공 변위 거동 분석에 관한 연구)

  • Kim, Chang-Yang;Hong, Sung-Wan;Kim, Kwang-Yeom;Baek, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.183-197
    • /
    • 2004
  • The introduction of geodetic methods of absolute displacement monitoring in tunnels has significantly improved the value of the measurements. Structurally controlled behavior and influences of an anisotropic rock mass can be determined, and the excavation and support adjusted accordingly. Three-dimensional finite element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters were evaluated from the results. The results were compared to monitoring results from Alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF

Estimation of Indent Fracture due to the Moving Process of a Pin on PCB Plate (PCB 판에 대한 핀의 이동 공정에 따른 압입파괴 평가)

  • Kim, Young-Choon;Kim, Choon-Sik;Lee, Hee-Sung;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6967-6972
    • /
    • 2014
  • Assembly using a bolt and nut, and rivet or pin have been used widely for forming mechanical joints. The indent method is an easier process than other manufacturing techniques and the toughness of the material is excellent. On the other hand, there are many cases in which the cracks occur on the manufacturing process as the indent method. Therefore, two kinds of models, in which a pin goes into and out PCB plate in this study were developed using the CATIA program and finite element methods were performed using the ANSYS program. When a pin was passed through a PCB plate in cases 1 and 2, the maximum loads applied to the PCB plate were 79.708N and 90.277N, respectively. When the PCB plate came out of the pin in cases 1 and 2, the maximum loads were 63.783N and 33.75N, respectively. The damage prevention and durability can be improved by applying the study results to the design of real indentation.

A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms (열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구)

  • Bae, So Young;Kang, Gyu-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air (공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계)

  • Ahn, Hongmin;Jin, JaeHyeok;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Three Dimensional Induced Polarization Modeling (3차원 IP 탐사의 모형 응답 계산)

  • Nam Myung-Jin;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The application of geophysical survey methods need to be integrated to meet the increasing demands of imaging of the subsurface in the practical application of civil engineering, underground water survey and environmental problems. This paper examines the IP survey which can be surveyed simultaneously with DC resistivity survey. In this study, 3-D IP modeling algorithm was developed. The 3-D IP modeling algorithm was based on 3-D resistivity modeling by finite-element method. The result of 3-D modeling was compared with 2-dimensional modeling result. The result showed that the 3-D modeling algorithm developed in this study was accurate. Finally, the 3-D modeling algorithm developed in this paper will be useful for the study of IP data.

  • PDF

Comparative Study on the Stability Analysis Methods for Underground Pumped Powerhouse Caverns in Korea (국내 양수발전소 지하공동 안정성 해석방법의 비교)

  • 임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.248-258
    • /
    • 2002
  • The sixth underground pumped powerhouse cavern is now under construction in Korea. For the stability analysis for the caverns of the five underground powerhouses, finite element method was used. For the analysis, in-situ rock stress were measured by overcoring method. The stress measurement showed that initial horizontal to vertical stress ratio was 1.07-1.32 in low powerhouse sites. Rock mass strength and elasticity were assumed from rock core properties through engineering processes. So the ratio of input elasticity fur the analysis were about 0.16-0.55 to rock core elasticity. In most of the analysis, elasto-plastic condition with Mohr-Coulomb failure criteria were applied. But in one case, viscoelastic condition was applied, too. The input cohesion and internal friction angle were approximately 0.12-0.22, 0.6-0.87 to rock core strength parameters, respectively.

Numerical Analysis of The Foundation Based on The Cap Model(I) (Cap Model을 이용한 기초식반의 수치해석(I) : 실내시험에 의한 Cap Model 의 Parameter 결정)

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1987
  • This study has been carried out as a basic course for the analysis of foundation deformations based on the Cap model using the finite element methods. Material parameters should firstly be determined in order to use the Cap model for numerical solution. Associated with the fact described above, a method determining the soil parameters is suggested using algorithm for numerical ana])isis from raw truly triaxial compression laboratory test data of Pueblo.Colorado sand by Zaman, et at. (1982) More specifically, the change of soil parameters Is thoroughly examined by weighting the data obtained from CTC and RTE tests, respectively. The main results obtained are as follows; 1. The obtained values of parameters (E, V and 2) are same irrespective of data obtained from various kind of tests. 2. The values of the other parameters are dependent on data used. 3. The determination of parameters is little affected by the weighting factor.

  • PDF

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.