• 제목/요약/키워드: Finite element method Time difference method

검색결과 148건 처리시간 0.024초

저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性) (On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer)

  • 김남형;키요시 타키카와
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.267-277
    • /
    • 1993
  • 본 논문에서는 유한요소법을 2차원 난류경계층에 적용하였으며, 점성유체의 시간의존 비압축성 운동을 시간과 압력장(場)에서 Navier-Stokes방정식과 vorticity방정식을 이용하여 정식 화하였다. 수치계산방법은 Galerkin방법에 기초하였으며, 난류 경계층의 eddy kinematic viscosity에 대해서는 Prandtl의 혼합거리이론을 도입하였다. 난류 경계층에서 파동에 의한 임의 저면에서 저질의 이동을 수치계산하였다. 유한 요소법에 의해 얻어진 결과는 진동흐름에 의한 경계층과 파동에 의한 경계층에서의 특성의 차이를 분명히 하였다.

  • PDF

병렬 환경하의 진화 이론을 이용한 결함인식 (Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai;Yuanxue Liu;Guangjian Gao;Shuang Su
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.195-205
    • /
    • 2023
  • The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

사면보강 뿌리말뚝공법의 준3차원적 안정해석기법 (Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement)

  • 김홍택;강인규;박사원
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

FDTD 방법을 이용한 Ku 대역 송수신 겸용 마이크로스트립 단일 소자 해석 및 8X4 배열 안테나 (An Analysis of TX/RX Microstrip Single Element using FDTD at Ku-band and 8X4 Array Antenna)

  • 윤재승;전순익
    • 한국전자파학회논문지
    • /
    • 제14권8호
    • /
    • pp.830-838
    • /
    • 2003
  • 본 논문에서는 위성 통신 송, 수신 겸용 단일 마이크로스트립 안테나를 설계, 해석, 제작, 측정하였다. 송,수신 주파수 대역은 각각 14.0~l4.5 GHz, 11.7~12.75 GHz이며, 각각 수직, 수평 편파를 사용한다. 제안된 단일안테나 구조는 수신 대역에 대하여 마이크로스트립 직접 급전, 송신 대역에 대하여 개구면 결합 스트립 라인 급전 방법을 사용하였으며, 높은 이득과 수신 광대역 특성을 위하여 적층된 방사 소자를 사용하였다. 본 연구에서의 단일 소자의 해 석으로 finite difference time domain(FDTD) 방법과 method of moment(MOM)에 의한 방법을 비교하였으며, 유한한 구조와 두 접지면간의 불완전성 등이 해석에 고려되므로 FDTD 방법이 보다 정확함을 알 수 있었다. 제안된 구조는 2차원 구조로의 일반적 확장이 용이하며 송, 수신 8$\times$4 배열에 대하여 수신, 송신-10 dB, -14 dB 이하의 반사계수와 18.6~20.2 dBi, 송신 20.7~21.3 dBi의 이득값을 가져 각각 43~51%, 52~57 %의 방사효율을 가져, 스트립라인 급전에 의해 송신 대역에서 불요방사 수준을 낮출 수 있었다.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

3차원 MT 모델링 기법의 비교 분석 (A Comparative Study of 3D MT Modeling Methods)

  • 한누리;남명진;김희준;송윤호;서정희
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.154-160
    • /
    • 2007
  • 이 논문에서는 Mackie et al. (1994), Sasaki (1999) 및 Nam et al. (2007)이 개발한 3차원 자기지전류 탐사 모델링 알고리듬의 특징을 자세히 비교 분석하고자 한다. Mackie et al. (1994)과 Sasaki (1999)의 알고리듬은 유한차분법(FDM)에 기초한 반면, Nam et al. (2007)의 알고리듬은 변유한요소법(EFEM)에 기초하고 있다. 이들 세 가지 방법으로 COMMEMI 3D-2 모형의 해를 구하고 적분방정식법의 해와 비교하였으며, 또한 세 가지 격자에 대해 세 개 주파수에서 계산시간을 비교하였다. FDM에 기반을 둔 두 가지 기법에서는 EFEM을 이용하는 경우보다 빠른 시간에 해를 계산할 수 있으며 이때 계산된 겉보기비저항과 위상은 전체적으로 적분방정식법의 해와 잘 일치하였으며 이상체 근처에서만 작은 차이를 보인다. 한편 EFEM에 기초한 알고리듬도 비교적 합리적인 시간 내에 매우 정확한 해를 계산할 수 있으며 지형을 포함한 경우에도 해를 계산할 수 있는 장점이 있다.