• Title/Summary/Keyword: Finite element method Time difference method

Search Result 148, Processing Time 0.028 seconds

An Estimation of a Billet Temperature during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Although it is very important to obtain information on billet temperatures, it is not feasible during furnace operation. Consequently, a billet temperature profile should be estimated. Moreover, this estimation should be done within an appropriate time interval for an on-line application. In this paper, a billet heat transfer model based on 2D FEM(Finite Element Method) with spatially distributed emission factors is proposed for an on-line billet temperature estimation and also a measurement is carried out for two extremely different furnace operation patterns. Finally, the difference between the model outputs and the measurements is minimized by using a new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. The obtained emission factors are applied to a simulation for the data which are not used in the model tuning for validation.

Study about dynamic/static recrystallization during hot compression of Cast alloy 718 (Cast alloy 718의 고온압축시 동적/정적재결정에 대한 연구)

  • Kim, Nam-Yong;Kim, Jeoung-Han;Yeom, Jong-Taek;Park, Nho-Kwang;Yoon, Jong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.207-210
    • /
    • 2006
  • Behavior of dynamic/static recrystallization during hot deformation of Cast alloy 718 was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructural evolution during hot compression and post heat-treatment was investigated and deformation mechanism were analyzed by stress-strain curve, FE-simulation and microstructure. FE-simulation results show that the temperature difference between top-die and billet has considerable influence on the final shape of compressed specimen. The relation between applied load and processing time was predicted by the FE-simulation.

  • PDF

Effect of Processing Condition on the Hot Extrusion of Al-Zn-Mg-Sc Alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Kim, Nam-Yong;Kim, Jin-Ho;Yeom, Jong-Taek;Lee, Dong-Geun;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.143-147
    • /
    • 2006
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Yeom Jong Taek;Kim Nam Yong;Lim Su-Keun;Park Nho Kwang;Kim Jeoung Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

Analysis of Equivalent Circuit Approach for Ridge Type CPW Traveling - Wave Structure (릿지 형태 CPW 진행파형 구조의 등가회로 분석)

  • 윤상준;공순철;옥성해;윤영설;구민주;박상현;최영완
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.45-54
    • /
    • 2004
  • Microwave characteristics of ridge type CPW traveling-wave(TW) electroabsorption modulator and photodetector are affected by the thickness of intrinsic layer, width of guiding layer, and the separation of signal and ground electrodes. These factors are determined effective index of microwave and characteristic impedance due to changing of capacitance(C) and inductance(L) of device. However, conventional equivalent circuit of TW-structure is approximated to microstrip and CPW transmission line by distribution of electric and magnetic fields, respectively. In this paper, we analyzed microwave characteristics of TW-structure and found more accurate value of C and L by using finite difference time domain (FDTD) method. These values are adopted circuit element of equivalent circuit. Microwave characteristics obtained by the FDTD and equivalent circuit model show good agreement.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

Analysis of Detent Force Reduction Method in a Permanent Magnet Linear Synchronous Motor

  • Jang, Seok-Myeong;Yoon, In-Ki;Lee, Sung-Ho;Kang, Do-Hyun;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The severe problem in improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM) is the large detent farce caused by the permanent magnet arrangement. It is generally an undesired effect that contributes to the torque ripple, vibration and noise of machine. The detent force is arisen from the difference of the position of a permanent magnet end and a tooth position. In this paper, the four methods to reduce detent force were studied and analyzed. The methods are adjusting the width of permanent magnet, varying the shape of armature teeth, relocating the permanent magnet, and adjusting the width of permanent magnet and relocating the permanent magnet at the same time. To analyze the detent farce according to flour methods, a two-dimensional Finite Element Analysis [FEA] was used and we compared with the ratio of reduction of the detent farce according to the flour methods.