• 제목/요약/키워드: Finite element (FE) modeling

검색결과 273건 처리시간 0.02초

사교(斜橋)의 강상판(鋼床板)의 정적거동(靜的擧動)에 대한 연구(研究) (A Study on the Static Behaviors of Steel Deck Plates of Skew Bridges)

  • 양창현;오지택
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.815-826
    • /
    • 1994
  • 신설교양(新設橋梁)이 기존(旣存)의 도로(道路)나 철도(鐵道) 또는 하천(河川)을 횡단(橫斷)하는 경우에 지형적(地形的)인 여건(與件)으로 인하여 사교(斜橋)(skew bridge)의 건설(建設)이 불가피한 경우가 흔히 있게 된다. 강상판(鋼床板)은 최근(最近) 구조용강재(構造用鋼材)의 품질향상(品質向上), 용접기술(熔接技術)의 발달(發達)에 힘입어 사하중(死荷重)의 감소(減少) 및 공기단축(工期短縮) 등을 위하여 특히 장대교(長大橋)의 바닥판으로 널리 사용되어지고 있다. 본(本) 연구(硏究)에서는 강상판(鋼床板)을 정교(精巧)한 유한요소(有限要素)로 모델링하여 사각(斜角)에 따른 정적거동(靜的擧動)의 변화(變化)률 범용(汎用) 유한요소해석(有限要素解析)프로그램인 SAP90을 사용하여 분석(分析) 고찰(考察)하였다. 유한요소분석(有限要素分析)을 통하여 상판(床板)의 사각(斜角)이 $90^{\circ}{\sim}30^{\circ}$ 사이로 변화(變化)할 때에 발생(發生)되는 예각부(銳角部)와 둔각부(鈍角部) 및 중앙부(中央部)에서의 거동(擧動)을 등방성평판(等方性平板)과 직교이방성평판(直交異方性平板)에 대하여 비교분석(比較分析)하였다. 해석결과(解析結果)로부터 사각(斜角)을 갖는 원판(原板)은 등방성(等方性), 직교이방성(直交異方性)에 상관없이 둔각부(鈍角部)에서의 모멘트, 반력(反力) 및 처짐이 상판(床板)의 중앙부(中央部)에 비하여 그 값이 크게 나타났으며, 특히 $45^{\circ}$이하(以下)의 사각(斜角)에서는 그 차이(差異)가 매우 크게 발생(發生)함을 알 수 있었다. 또한 $55^{\circ}$이하(以下)로 사각(斜角)이 감소(減少)할수록 상판(床板) 둔각부(鈍角部)에서의 모멘트가 중앙부(中央部)의 모멘트 크기를 초과(超過)하며, 그 차이(差異)는 사각(斜角)이 감소(減少)할수록 현저하게 커짐을 확인하였다. 본(本) 연구(硏究)에서는 사각(斜角)의 사각(斜角)에 따른 거동특성(擧動特性)에 대한 정량적(定量的)인 평가(評價)를 하고, 사교(斜橋)에 있어서 위약부위(脆弱部位)와 사각(斜角)의 한계(限界)를 제시하였다.

  • PDF

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.