• Title/Summary/Keyword: Finite difference time domain method

Search Result 361, Processing Time 0.027 seconds

Single-pixel Autofocus with Plasmonic Nanostructures

  • Seok, Godeun;Choi, Seunghwan;Kim, Yunkyung
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • Recently, the on-chip autofocus (AF) function has become essential to the CMOS image sensor. An auto-focus usually operates using phase detection of the photocurrent difference from a pair of AF pixels that have focused or defocused. However, the phase-detection method requires a pair of AF pixels for comparison of readout. Therefore, the pixel variation may reduce AF performance. In this paper, we propose a color-selective AF pixel with a plasmonic nanostructure in a 0.9 μ㎡ pixel. The suggested AF pixel requires one pixel for AF function. The plasmonic nanostructure uses metal-insulator-metal (MIM) stack arrays instead of a color filter (CF). The color filters are formed at the subwavelength, and they transmit the specific wavelength of light according to the stack period and incident angles. For the optical analysis of the pixel, a finite-difference time-domain (FDTD) simulation was conducted. The analysis showed that the MIM stack arrays in the pixels perform as an AF pixel. As the primary metric of AF performance, the resulting AF contrasts are 1.8 for the red pixels, 1.6 for green, and 1.5 blue. Based on the simulation results, we confirmed the autofocusing performance of the MIM stack arrays.

Analysis of Endcap Effect for MRI Birdcage RF Coil by FDTD Method (FDTD 방법을 이용한 MRI Birdcage RF Coil의 Endcap 효과 분석)

  • Chung Sung-Taek;Park Bu-Sik;Shin Yoon-Mi;Kwak June-Sik;Cho Jong-Woon;Kim Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Purpose : B1 field of birdcage RF (radiofrequency) coil that is used most for brain imaging in magnetic resonance imaging (MRI) decreases toward endring from the coil center. We investigated how much RE B1 homogeneity effect the endcap shield brings form the coil center as it towards to endcap region. Materials and Methods : We compared RF B1 field distribution by each finite difference time domain (EDTD) simulations for lowpass, highpass and hybrid birdcage RF coils. We selected the highpass birdcage RF coil that was the highest RF B1 field condition as simulation result, and studied how much RF B1 homogeneity effect was occurred when endcap shield was applied to endring area. Results : B1 field of the highpass birdcage RF coil was higher than other birdcage RF coil types as simulation result. However, the RF B1 homogeneity was lower than other coil types. RE B1 field of highpass birdcage RF coil with endcap shield is similar with RF B1 field of hybrid birdcage RF coil and the overall RE B1 homogeneity in sagittal direction was better. Conclusion In this paper, proposed method can apply improving RF B1 homogeneity of RF coil in clinical examination.

  • PDF

Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je;Byun, Joon-Ho;Kim, Nam-Young;Kim, Jong-Heon;Lee, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1211-1217
    • /
    • 2000
  • The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

  • PDF

MODE CONTROL OF GUIDED WAVE IN MAGNETIC HOLLOW CYLINDER USING ELECTROMAGNETIC ACOUSTIC TRANSDUCER ARRAY

  • FURUSAWA, AKINORI;KOJIMA, FUMIO;MORIKAWA, ATSUSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.196-203
    • /
    • 2015
  • The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

Numerical Assessment for Coastal Water Purification Utilizing a Tidal Jet System (조석분류를 이용한 연안해역의 수질정화에 관한 수치적 평가)

  • Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.58-63
    • /
    • 2006
  • When the costal zone surrounded by a breakwater has a narrow vertical opening, currents in the vicinity of a narrow entrance can result in a jet flow, coinciding with the tide. Such a Tidal-Jet Generator(TJG) can change the water mass distribution and transport processes in the domain of influence of the jet. Also, it can decrease the residual time of them. In the present study, the water purification utilizing tidal jets in the coastal zone over constant bathymetry are estimated numerically, using a finite-difference numerical scheme, named the NS-MAC-TIDE method, which isbased on the fully 3D Navier-stokes(NS) equations. The shear velocity near the inlet of the TJG are predicted from the flow field simulation, and are assessed qualitatively with the development of scouring or sediment that is caused by the change of diffusion or sweeping flowup from the seabed of sediment particles. Finally, through solving a transport equation of concentration, the residual time related on mass transport processes and the flushing mechanism for water purification are investigated.

Travel Time Calculation Using Mono-Chromatic Oneway Wave Equation (단일주파수 일방향파동방정식을 이용한 주시계산)

  • Shin, Chang-Soo;Shin, Sung-Ryul;Kim, Won-Sik;Ko, Seung-Won;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.4
    • /
    • pp.119-124
    • /
    • 2000
  • A new fast algorithm for travel time calculation using mono-chromatic one-way wave equation was developed based on the delta function and the logarithms of the single frequency wavefield in the frequency domain. We found an empirical relation between grid spacing and frequency by trial and error method such that we can minimize travel time error. In comparison with other methods, travel time contours obtained by solving eikonal equation and the wave front edge of the snapshot by the finite difference modeling solution agree with our algorithm. Compared to the other two methods, this algorithm computes travel time of directly transmitted wave. We demonstrated our algorithm on migration so that we obtained good section showing good agreement with original model. our results show that this new algorithm is a faster travel time calculation method of the directly transmitted wave for imaging the subsurface and the transmission tomography.

  • PDF

A Study on the Analysis of the Microstrip Line by Using Inner Source at the FDTD Method (유한차분 시간영역 해석법에 내부전원을 이용한 마이크로스트립 선로 해석에 관한 연구)

  • 윤성현;정수길;손창수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.567-577
    • /
    • 1998
  • When continuous and discontinuous microstrip is analyzed with FDTD(Finite Difference Time Domain) method, we used Berenger's 3D-PML as absorbing boundary condition, and IST(Inner Source Technique) was used for source excitation instead of front excitation that is existing method. In the case using IST, we have observed that analyzed characteristic is not affected by the reduced computational domain of the side and top face in which evanescent field and radiation field is exist. Also, if we control the position of the inner source, we could effectively reject the influence of the reflective wave by mean of imperfective boundary condition. In this paper, by using IST, we have calculated dispersive characteristic and characteristic impedance of the microstrip. And we have calculated magnitude and phase of the scattering coefficient, and obtained equivalent circuit of the open microstrip end.

  • PDF

The Analysis of a Coaxial-to-Waveguide Transition Using FDTD with Cylindrical to Rectangular Cell Interpolation Scheme

  • Yu, Kyung-Wan;Kang, Sung-Choon;Kang, Hee-Jin;Choi, Jae-Hoon;Kim, Jin-Dae
    • ETRI Journal
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • We analyze the characteristics of a coaxial-to-waveguide transition based on the finite difference time domain (FDTD) method with the cylindrical to rectangular cell interpolation scheme. The scheme presented in this paper is well suited for the analysis of a microwave device with a probe near waveguide discontinuity because perfect TEM mode can be generated inside the coaxial cable by using the cylindrical cell. The scattering parameters of a designed Ka-band transition are evaluated and compared with those of commercially available software, High Frequency Structure analysis Simulator (HFSS) and measured data. There exists good agreement between the measured and calculated data. In order to prove an accuracy of the interpolation scheme, a coaxial to waveguide transition with a disk-loaded probe is analyzed by the present approach and the results of this analysis are compared with measured data. Comparison shows that our results match very closely to those of measurement and other approaches. The method presented in this paper can be applied to analyze the characteristics of a probe excited cavity, coaxial waveguide T-Junctions, and so on.

  • PDF

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber (원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성)

  • 김정훈;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.431-436
    • /
    • 2003
  • In this paper, simulation results of an electromagnetic field and mode distributions in a cylindrical reverberation chamber were presented. Reverberation chamber is an alternative test facility for a semi anechoic chamber, which is widely used for the analysis and measurement of electromagnetic interference and immunity tests. The method of computing the number of modes in a cylindrical reverberation chamber was presented and the number of modes in a cylindrical reverberation chamber with the same volume was compared with the different ratio of radius to height. The FDTD method was used to produce field characteristics inside of rectangular, right-angled isosceles triangular, and cylinder type reverberation chambers with the same test volume.