• Title/Summary/Keyword: Finite difference time domain method

Search Result 361, Processing Time 0.029 seconds

The Wide-band Two-element Microstrip Slot Array Antenna with the Cross-shaped Feedline

  • Shin, Ho-Sub;Kim, Nam;Jang, Yong-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.163-166
    • /
    • 2000
  • The design, numerical simulation, and an experimental implementation of two-element cross-shaped microstrip line-fed printed slot array antenna for IMT-2000 at the 2.0 GHz band is presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the Finite-Difference Time-Domain (FDTD) method. It was shown that the measured 2.0 VSWR bandwidth of one-element microstrip slot antenna is from 1.42 GHz to 2.69 GHz, which is approximately 61.8% and that of two-element microstrip slot array antenna is from 1.42 GHz to 2.56 GHz, which is approximately 57.3% And it was shown that the measured gain of one-element microstrip slot antenna is 2.75 dBi and that of two-element microstrip slot antenna is 4.75 dEi. The antennas were fabricated and tested. The measured results are in good agreements with the FDTD results.

  • PDF

The Characteristic Analysis of the Cross-shaped Microstrip Slot Antenna with the Reflector for Permittivity and Height of Dielectrics

  • Jang, Yong-Woong;Shin, Ho-Sub;Oh, Dong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.183-186
    • /
    • 2000
  • We analyzed the cross-shaped microstripline-fed slot antenna with the reflector using FDTD(Finite-Difference Time-Domain) method in this paper. The proposed antenna uses RR Duroid-5880 substrate(relative permittivity 2.2 and height(1.578 mm) of dielectrics), and compares the optimized results of other kind substrates. The maximum bandwidth of the proposed antenna is from 1.91 GHz to 5.21 GHz, which is approximately 1.437 octave for the VSWR $\leq$ 2. It was found that the bandwidth of the antenna depend highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The experimented data for the VSWR and the radiation pattern of the antenna are also represented.

  • PDF

A study on the photonic bandgaps in two-dimensional photonic quasicrystals by FDTD simulation (FDTD 시뮬레이션을 이용한 2차원 광자준결정 구조의 광자밴드갭 특성 연구)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.530-531
    • /
    • 2008
  • 본 논문에서는 우수한 광학 특성으로 활발히 연구되고 있는 광자결정(PCs)과 이를 변형시킨 광자준결정(PQCs) 구조를 설계하고 특성을 평가, 비교하였다. 특성 평가는 cubic 및 hexagonal 기본격자의 PCs와 8-fold PQC 구조를 비교하였으며 각각 동일한 충진률 동일한 굴절률 차이의 조건을 갖도록 설계하여 구조에 따른 PBGs 변화를 살펴보았다. 계산 방법은 Maxwell 방정식을 이용한 finite difference time domain (FDTD) 전산모사법을 사용하였다. 본 연구의 결과로부터 잘 설계된 2차원 PQCs는 낮은 굴절률차이(${\Delta}n$)의 물질 구조에서도 완전한 광자밴드갭(photonic bandgaps: PBGs)를 가질 수 있다는 것을 확인하였다. 본 연구진은 다중회전 홀로그래피 방법 (multi-rotational holographic method)을 이용하여 설계된 PQCs를 완벽하게 재현하려는 공정을 진행 중에 있다.

  • PDF

An analysis of microwave active circuit using the extended FDTD method (확장된 시간 유한 차분법을 이용한 초고주파 능동 회로의 해석)

  • 박재석;남상식;장상건;이혁재;진년강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2736-2743
    • /
    • 1997
  • In this paper, the extended finite difference time domain(FDTD) algorithm is applied to carry out full-wave analysis of a microwave amplifier circuit. The active device included in the amplifier is modeled by equivalent current sources. Equivalent current sources are characterizing interaction between electronmagnetic waves and active devices and can be directly incorporated into the FDTD algorithm. To confirm this analysis, an amplifier is implemented. The FDTD simulation shows good agreement with measured results.

  • PDF

Applied of Integrated Optical Biosensor based on Combination of Photonic Crystal Micro-Cavity and Ring Resonator (광결정 공진기와 링 공진기의 공진특성 결합을 통한 바이오센서 응용)

  • Kim, Hong-Seung;Kim, Doo-Gun;Oh, Geum-Yoon;Lee, Tae-Kyeong;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.817-822
    • /
    • 2011
  • We propose a novel ring structure based on the stadium-shaped ring resonator (SSRR) with dual photonic crystal microcavity (DPCM) for biosensor and analyzed the sensing characteristics. The Q-factor of the photonic crystal microcavity (PCM) can be significantly enhanced when the PCM or DPCM has the same resonance condition as the SSRR. The simulation results show that the Q-factor of the SRR with DPCM was increased by three times in comparison with single PCM structure. We also defined a mutual interference between two PCMs. Assuming a detectable spectral resolution of 10 picometers, a refractive index resolution of $3.03\times10-5$ can be measured on the SSRR-DPCM.

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.432-442
    • /
    • 2012
  • In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.

Electric Field Uniformity in Reverberation Chamber with 5 GHz Diffuser by Transmission Antenna (송신 안테나에 의한 5 GHz 이차 잔류 디퓨저를 적용한 전자파 잔향실의 내부 필드 균일도 변화)

  • Rhee, Eugene
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.83-86
    • /
    • 2021
  • In this paper, electric fields in electromagnetic reverberation chambers, which are used as a substitute facility for EM-free anechoic chambers, are analyzed. This paper focused on the 4-5 GHz band, which is expected to adversely affect equipment. To analyze the field uniformity inside the electromagnetic reverberation chamber, electric field strengths are sampled and finite-difference time-domain method was used for numerical analysis. Moreover, Quadratic residue diffuser was used to improve the characteristics of the electromagnetic reverberation chamber and the uniformity of the internal field strength. Standard deviation, tolerance characteristics, and partiality characteristics were compared while varying the aiming point of transmission antenna.

Implementation of the Finite-Difference Time-Domain Method in Object-Oriented Programing Using Piecewise Update Scheme (구분별 갱신 방식을 이용한 유한차분시간영역의 객체 지향적 구현)

  • Chun, Kyungwon;Kim, Huioon;Chung, Youngjoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1358-1360
    • /
    • 2011
  • GMES 는 유한차분시간영역 방법의 객체지향적 구현이다. 기존의 구현에선 점별(piecewise) 갱신방식을 사용해서 물성 표현 능력은 우수하지만, 계산 시간과 메모리 요구량에서 큰 약점이 있었다. 구분별(piecewise) 갱신 방식을 반영해 설계를 변경한 결과 물성 표현 능력은 기존과 같은 수준으로 유지하면서 70~90%에 이르는 계산 속도 개선과 사용 메모리 감소의 효과를 얻을 수 있었다.

A Ridge-type Silicon Waveguide Optical Modulator Based on Graphene and Black Phosphorus Heterojunction

  • Zhenglei Zhou;Jianhua Li;Desheng Yin;Xing Chen
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.399-405
    • /
    • 2024
  • In this paper, an optical modulator based on monolayer graphene and triple-layer black phosphorus (BP) heterojunction in the optical communication band range is designed. The influences of geometric parameters, chemical potential, BP orientation and dispersion on the fundamental mode of this modulator were determined in detail by the finite-difference time-domain (FDTD) method. Using appropriate geometric parameter settings, the extinction ratio of this proposed modulator is 0.166 dB, while the modulator with a working length of 3 ㎛ can realize a 0.498 dB modulation depth. The 3-dB bandwidth of this modulator could achieve up to 2.65 GHz with 27.23 fJ/bit energy consumption. The extinction ratio and bandwidth of the proposed modulator increased by 66% and 120.83%, respectively, compared to the monolayer graphene-based ridge-type waveguide modulator. Energy consumption was reduced by 97.28%, compared to a double-layer graphene-based modulator.

A Study on the FDTD method using Periodic Boundary Condition for PBG Performance Analysis (PBG 구조 성능 해석을 위한 주기경계조건의 FDTD 적용연구)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • It is difficult to design accurately the bandgap of metamaterial depending on metamaterial pattern and array configuration. In this paper, we propose a design method for the wanted bandgap frequency using any metamaterial pattern in 2 dimensional array. Metamaterial structure is consisted of periodic array. Therefore the calculation area in FDTD(finite difference time domain) method can be reduced by applying the periodic boundary condition to 2-D metamaterial array. The method for design and calculation the L and C values by using 2-D is also considered. So it can be designed more accurately and rapidly. For example, we designed metamaterial square pattern array in 5 GHz, and compared with the 1-D metamaterial pattern using analysis method in microstrip line. As a result, we found that the accuracy of this proposed method can be incresed to 14.7%.

  • PDF