• Title/Summary/Keyword: Finite Flat Plate

Search Result 183, Processing Time 0.026 seconds

A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft (항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구)

  • Kim, Yeong-Jun;Kim, Chang-Nyeong;Kim, Cheol-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates (정현파형 주름강판의 전단좌굴특성 분석)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • Corrugated steel plates are made by fabricating thin steel plates to have trapezoidal or sinusoidal corrugation, and the corrugated plates are able to maintain high out-of-plane rigidity even when they are used instead of thick flat plates. Also, corrugated steel plates have almost no axial rigidity due to the accordion effect. Thus, if they are applied to the webs of plate girders, designing can be easily conducted so that the webs bear only shear stresses. However, unlike flat plates, the shear buckling of corrugated steel plates has very complex characteristics where buckling occurs due to the interaction of local and global buckling, besides local buckling and global buckling. For the investigation of the cause and characteristics of this interactive buckling, studies on sinusoidal corrugated steel plates are fewer than studies on trapezoidal corrugated steel plates. Therefore, in this study, the shear buckling characteristics of sinusoidal corrugated steel plates and the occurrence pattern of interactive buckling were investigated. For the calculation of shear buckling strength, a finite element program was used, and the analysis results were compared with the exact solution. In addition, the characteristics of buckling stress change and the change of buckling mode shape depending on corrugation thickness and shape parameter were analyzed, and by comparing these results with the results of a theoretical equation, the timing of buckling mode change was analyzed.

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect (회전 효과를 고려한 Active Gurney Flap 의 동특성 해석)

  • Kee, YoungJung;Kim, TaeJoo;Kim, DeogKwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • In this study, the finite element analysis was carried out to investigate dynamic characteristics of the AGF(Active Gurney Flap) which is under development for reducing vibration and noise of the helicopter rotor system. The Gurney flap is a kind of small flat plate, mounted normal to the lower surface of the airfoil near to the trailing edge. An electric motor, L-shaped linkages and flap parts were integrated into a rotor bade, and 3~5/rev control was given to the AGF to reduce the vibration in the fixed frame. Thus, an explicit time integration method was adopted to investigate the dynamic response of the AGF with considering both centrifugal force due to the rotor rotation and active control input, and it can be seen that the vertical displacement of the AGF was satisfied to meet the design requirement.