• Title/Summary/Keyword: Finite Element method

Search Result 13,440, Processing Time 0.041 seconds

A Study on the Strength Safety of Valve Structure for LPG Cylinder (LPG 용기용 밸브 구조물의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.27-31
    • /
    • 2014
  • This paper presents a study on the strength safety of the weak parts at Part 1, Part 2 and Part 3 in the valve structure for LPG cylinder by using the finite element method. The maximum Von Mises stress of 27.5MPa was occurred at the corner edge of a valve Part 1 for the valve thickness of 1.5mm and LPG pressure of 3.5MPa. And the maximum Von Mises stresses for the valve thickness of 1.5mm and LPG pressure of 3.5MPa were 41.5MPa at Part 2 and 46.5MPa at Part 3. The FEM computed results show that the maximum Von Mises stresses at Part 1, Part 2 and Part 3 are very low value of 9.2~15.5% compared with the yield strength of a copper alloy, C3604. This means that the valve thickness for LPG cylinder is so over designed for the conventional valve. Thus, this paper recommends that the thickness at Part 1 and Part 2 is reduced for a light weight of a copper valve. But, the thickness at Part 3 may be better for a thick valve as a conventional valve for high torque strength.

A Study of Vertical Axis Wind Turbine by Simulation (시뮬레이션을 통한 수직축 풍력발전에 관한 연구)

  • Park, Jung-Cheul;Won, Woo-Yeon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.241-245
    • /
    • 2018
  • This paper designed the main blade in V-shape and tried to identify the best design conditions by changing the main blade angle and wind speed. When the main blade open angle was maintained at $120^{\circ}$ and the sample2 with an angle changed by $30^{\circ}$ was compared with the sample3 changed by $60^{\circ}$, the power output of sample2 was 3.8[kW], the power coefficient was 0.12, and the power output of sample3 was 6.0[kW], the power coefficient was measured as 0.18. So the power output of sample 3 was 58% higher than that of sample2, and the power coefficient was increased by 50%. The power coefficient was 0.18 and the wind speed was changed to 10[m/s] at 6.0[kW] at wind speed of 7[m/s] by fixing main blade open angle of $120^{\circ}$ and angle of $60^{\circ}$. The output was measured at 7.7[kW] and the power coefficient at 0.23. When the wind speed was high, the power output increased by 28% and the power coefficient increased by 83%. Also, sample4 was 103% higher in output and 92% more in efficiency than sample2.

Numerical Analysis of Load Reduction for Underground Arch Structures with Soft Zone Using Expanded PolyStyrene Geofoam (EPS Geofoam을 이용한 Soft Zone 적용방법에 따른 지중아치구조물의 하중저감에 관한 해석 연구)

  • Kim, Soo-Ha;Park, Jong-Sup;Kang, Jun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2018
  • As the demand for underground space increases, many researchers have been studying the load reduction method using high compressible materials to solve for the stability problem of the overhead load and for the increase of the earth pressure which decreases the function of the underground structure. This paper determines the optimum soft zone and the effect of the using EPS Geofoam as a load reduction material to arch structures. A finite element analysis program, ABAQUS, is used to analyze the soil-structure interaction and the behavior of buried arch structures considering different four EPS Geofoam forms to confirm the most conservative shape. The optimum cross-sectional shape was determined by comparing the results of earth pressure reduction rate in accordance with the change of span-rise ratio and span length of the arch structure. It was confirmed that the earth pressure generated in the arch structure using the optimal soft zone selected by the numerical analysis was reduced by an average of 78%. In this study, the effect of EPS Geofoam on soil pressure reduction and its applicability to underground arch structures will provide an economical and conservative way to design underground structures and will help to increase the usability of deep underground space.

A Study on the Ultimate Strength Behavior according to Modeling Range of the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.35-39
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of merchant ship structures. For FHA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground (사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Chang, Seokbue;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.375-392
    • /
    • 2018
  • The shield TBM method is widely adopted for tunneling works in urban area because it has more beneficial ways to control settlement at ground surface than conventional mined tunneling. In the shield tunneling, backfill grouting at tail void is crucial because it is supposed not only to restraint ground deformation around tail void during excavation but also to compensate precedent ground settlement by pushing up the ground with highly pressurized grout. However, the tail void grouting has been found to be ineffective for settlement compensation particularly in sandy ground, which might be caused by complicate interaction between ground and tail void grouting. In this paper, the effects of tail void grouting on behavior of ground in shield TBM tunneling were investigated based on 3-dimensional finite element analyses. The results of numerical analyses indicated that backfill grouting actually reduces settlement by degrading settlement increasing rate in excavation, which means decrease of volume loss. Meanwhile, the grouting could not contribute to compensate the precedent settlement, because reduction of volume loss by grouting was found to be counterbalanced by volume change of ground.

Performance evaluation of high-performance lattice girder using numerical analysis (수치해석을 통한 고성능 격자지보재의 성능 평가)

  • Kim, Dong-Gyou;Ahn, Sungyoull
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.897-908
    • /
    • 2019
  • The objective of this study is to evaluate the field support performance of highperformance lattice girder (BK-Lattice Girder) by using numerical analysis. Three types (50, 70, 95-type) of existing and high performance lattice girders were applied to the cross section of highway 2, 3, and 4 lane tunnels to compare the supporting performance. The numerical analysis was the finite element method and the lattice girder was modeled in three dimensions with an elasto-plastic frame. The ground was modeled as a spring receiving only compression. The load was applied as a concentrated load on the central ceiling of the tunnel section. The yield strengths of the lattice girders were determined from the numerical results to compare the supporting performance of lattice girder. In case of 50-type, the yield strengths of high-performance lattice girders were increased by 6.7~10.0% compared with those of the existing lattice girders. In the case of 70-type, the high-performance lattice girders increased yield strengths by 12.1~14.9% than the existing lattice girder. In the case of 95-type, the high-performance lattice girders increased yield strengths by 13.3~20.0% than the existing lattice girder. As a result of numerical analysis, it was considered that the high-performance lattice girder supported better than the existing lattice girder when only the lattice girders were constructed.

Structural Engineering Study of 60M Twin-hull typed Car-ferry (60M급 쌍동형 카페리 구조 엔지니어링 고찰)

  • Lee, Jung-Ho;Kim, In-Chul;Seo, Kwang-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.532-540
    • /
    • 2017
  • This paper suggests study of basic structure design and structural analysis for the twin car-ferries. The rules and methodology for the strength analysis of medium and small sized high speed vessels with a length of more than 50m and a length/width ratio of more than 12, such as car-ferries, have not been clarified yet. Therefore, in this paper, the members scantling were carried out using the KR Rule, and the car-ferry exclusive vessel standard were further applied to verify the structural strength the design. The scantling of the members is based on the Korea Classification standards, and the car-ferries standards were additionally applied to verify the structural strength of the design. Especially, the ultimate strength of hull girder was additionally carried out by using car-ferry exclusive vessel standard, and proposed to overcome ambiguity of design by existing standard. The results of this study are expected to be useful as basic data related to structural design and structural analysis of high speed twin-hull car-ferries. The present car-ferry design has a sufficient safety margin in strength point of view according to the KR rule.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

The fabrication of microwave circulator using polycrystalline $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnets (다결정 $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ 가네트 자성체를 이용한 마이크로파대 서큘레이터 구현)

  • 박정래;김태홍;김명수;한진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2573-2584
    • /
    • 1997
  • In this paper, Ca, Sn substitute YIC(Yttrium Iron Garnet) ceramics were fabricated with Al substitutions in Fe sites. The strip-line circulator was designed and the properties of fabricated ciculator were measured. When the electric, magnetic and microwave properties were measured in Ca, Sn substituted YIG with Al subsititions, the relative permittivity and perfmeability in microwave frequencies were 15.623 and 0.972, repectively. For $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnet ceramics sintered at $1450^{\circ}C$, the ferrimagnetic resonance line width $\Delta{H}$) of 42 Oe and the saturation magnetization of 487 G were measured at 10 GHz. The strip-line circulator was simulated with 3-D FEM(Finite Element Method) software and designed to have insertion loss of 0.8dB, return loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strition loss of 0.8B, reture loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strip-line junction circulator using above YIG ceramics had insertion loss of 0.869dB, return loss of 26.955dB, isolation of 44.409dB at the center frequency of 1.9GHz.

  • PDF

Analysis of collapse course of mudstone cut slope and suggest countermeasure (이암 절토 사면의 붕괴 요인 분석 및 대책방안 제시)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.123-131
    • /
    • 2018
  • This study analyzed the collapse course of a mud stone cut slope during the construction of a express and suggested a countermeasure. Experiments were carried out on bedrock mudstone to investigate the engineering characteristics and the slope stability analysis at the time the design was reviewed. In addition, stability analysis, considering the strength softening characteristics of the slope due to the Swelling-Slaking phenomenon, was also performed. As a result of the Swelling-Slaking test, the slake durability was Low-Medium, and the swell potential was Very Low. A review of the stability analysis performed at the time of the design showed different results from the actual results because LEM analysis had been performed without considering the engineering characteristics of mudstone. As a result of additional stability analysis considering the strength softening characteristics, the slope collapse point and the maximum shear strain point of the stability analysis were the same and the standard safety factor was not satisfied. As a countermeasure, a slope mitigation method was found to be most appropriate. The mitigation slope was calculated by Finite element Analysis. A comparison with BIPS to determine the applicability of a mitigation slope revealed most of the unconsolidated mudstone.