• 제목/요약/키워드: Finite Element Stamping Analysis

검색결과 106건 처리시간 0.022초

알루미늄합금판재 성형한계 예측을 위한 파단모델 적용 (Application of Failure Criteria in Aluminum sheet Forming Analysis)

  • 이은국;김헌영;김형종;김흥규
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.207-207
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

  • PDF

내구성을 고려한 후륜현가 장치의 하이드로포밍 공정 설계 (Durability Based Design for Hydroforming process of Rear Suspension)

  • 김헌영;오인석;고정민;이동재;조우강
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 2006
  • The hydroforming processing is a relatively new technology in comparison with conventional stamping process. The hydroforming processing makes torsion beam in rear suspension of automobile. The durability of torsion beam is very important characteristic that operate in an automobile. In order to optimize the hydroforming process and satisfy the durability, the hydroforming simulation which could control an axial compression and high internal pressure with computer simulation has to be operated. This paper is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam of suspension system. The result from finite element analysis shows that the forming and the durability are optimized. If there is effect of First pressure in hydroforming processing that gap is in the die tool, the prototype of tube is not satisfied on the durability test.

  • PDF

평면이방성 박판성형공정의 3차원 유한요소해석 (3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal)

  • 이승열;금영탁;박진무
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

차체 스템핑공정을 위한 스텝형식의 내연적/외연적 결함 유한요소해석 (Step-wise Combinded Implicit/Explicit Finite Element Simulation of Autobody Stamping Processes)

  • 정동원;양동열
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.86-98
    • /
    • 1996
  • An combined implicit/explicit scheme for the analysis of sheet forming problems has been proposed in this work. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme dmploys a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explict scheme the problem of convergency is elimented at thecost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implici/explicit scheme has been developed. In the present work, the rigid-plastic finite element method using bending energy augmented membraneelements(BEAM)(1) is employed for computation. Computations are carried out for some typical sheet forming examples by implicit, combined implicit/explicit schemes including deep drawing of an oil pan, front fender and fuel tank. From the comparison between the methods the advantages and disadvantages of the methods are discussed.

  • PDF

프런트 엔드 모듈 캐리어 어퍼 부재의 면품질 개선을 위한 금형설계 변경 (Design Modification of the Stamping Die for the Improvement of Surface Quality of the Front End Module Carrier Upper Member)

  • 김세호
    • 소성∙가공
    • /
    • 제14권2호
    • /
    • pp.153-159
    • /
    • 2005
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the surface quality of the final product. The small inferiority induced by wrinkling near the wall of the upper member has been inspected after the draw-forming process. The finite element analysis is pursued with the whole geometry in order to consider the complicated shape. The simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification. One is to add the draw-bead near the critical region in order to increase the draw-in force. The other is to modify the tool shape such as the forming shape at the wall in order to absorb the excess metal before the final stroke. Simulation results show that the proposed guidelines both guarantee the improved surface quality.

저합금강판의 열간프레스성형에 따른 상변태 전산 해석

  • 복현호;김훈동
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Recently, hot stamping process has been paid attention greatly by automobile makers in accordance with the fuel efficiency and environmental issues as well as crash safety issue. The hot-stamped parts, however, demand extreme mechanical properties such as tensile strength of over 1470 MPa or equivalently Vickers hardness of around 450. In this work, to meet the demand efficiently, a method to predict mechanical property of hot-stamped parts based on numerical phase transformation scheme has been proposed associated with the thermo-mechanical coupled finite element analysis. This work deals with various phase transformation equations and validates them to select appropriate model for 0.2C-0.1Si-1.4Mn-0.5Cr-0.01Mo-0.002B steel sheet. The authors show that an efficient method saving time and cost to develop hot-stamped automobile parts ensuring suitable mechanical properties such as Vickers hardness and strength.

  • PDF

One-Step Forming을 이용한 박판성형 해석에 관한 연구 (Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming)

  • 정동원;이상제;김광희
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.11-17
    • /
    • 1999
  • The objective of this paper is to introduce very fast but still stable solution using finite element procedures, and it has been used in an iterative mode for product design applications. A lot of numerical techniques have been developed to deal with the material, geometric and boundary condition non-linearities occurred in the stamping process. One of them, the One-Step FEM is very efficient and useful tool for a design and trouble-shooting in various stamping processes. In this method, the mathod, the material is assumed to deform directly from the initial flat blank to the final configuration without any intermediate steps. The formulation is based on the deformation theory of plasticity and the upper bound theorem. As a result of the calculations, the initial blank shape is obtained, together with the material flow, strains and thickness distribution in the part.

  • PDF

레이저 용접 소재의 디프 드로잉 성형특성 해석 (Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank)

  • 김영석;하동호;정기조;서만석
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

박판성형공정의 블랭크 최적설계 (Optimal Blank Design for Sheet Metal Stamping)

  • 김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.141-145
    • /
    • 2000
  • A systematic method to find the optimal blank shape for sheet forming is proposed by coupling the numerical simulation technique. A weighted parameter was introduced in order to simplify the multi-variable optimization problem to a single-variable problem. The proposed method has been applied to the blank design of drawing processes to obtain the near-net shape within the required error bound after forming, Excellent results have been obtained between the numerical results and the target contour shapes. Through the investigation the proposed systematic method for optimal blank design is found to be effective in the practical forming processes

  • PDF

유한요소해석을 이용한 자동차용 박판부재의 감성품질 개선 (Improvement of Feeling Quality of a Stamped Member for an Autobody with the Finite Element Analysis)

  • 김세호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2004
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the feeling qualify of the final product. The small inferiority induced by wrinkling near the wall of the FEM upper member has been inspected after the draw-forming process. The finite element simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification: one is to add the draw-bead; and the other is to modify the tool shape such as the forming shape at the wall. Simulation results show that the proposed guidelines both guarantee the improved feeling quality.

  • PDF