• 제목/요약/키워드: Finite Element Stamping Analysis

검색결과 106건 처리시간 0.025초

전체해석과 국부해석을 통한 Door Inner 스탬핑 공정에서 발생하는 주름의 효과적인 해석 (An Efficient Analysis of Wrinkling in the Door Inner Stamping Process by Global Analysis and Subsequent Local Analysis)

  • 김종봉;김태정;양동열;유동진
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.653-662
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products together with tearing, springback and other geometric and surface defects. The initiation and growth of wrinkles are influenced by many factors such as stress ratios, mechanical properties of the sheet material, geometry of the workpiece, contact condition, etc. It is difficult to analyze the wrinkling initiation and growth considering all the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide scatter of data even for small deviations of factors. The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. In the present study, therefore, a global-local analysis technique is introduced for the computational efficiency. Through the analysis of wrinkling in the door inner stamping process, the efficiency of the global-local analysis technique is investigated.

  • PDF

유한요소해석을 이용한 차체시작부품 프레스성형 공정 개선 (Improvement of the Stamping Process for Sheet Metal Prototypes of an Auto-body with Finite Element Analysis)

  • 김세호
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.496-504
    • /
    • 2011
  • This paper introduces a CAE-based design procedure in the press forming process for the fabrication of sheet metal parts used in proto-cars. The finite element analysis reveals formability problems during the forming process of a floor member and a front cross member that constitute a rear floor assembly. The study proposes the modification of the initial blank shape or intermediate trimming of the product to prevent failure during forming. It is confirmed by the tryout process as well as the finite element analysis that sound prototype can be obtained with the modified design. The finite element analysis result also provides fairly good prediction of springback amounts used for the post-compensation of the product.

마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구 (A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet)

  • 손영기;정동원
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

알루미늄 판재 성형해석 시 파단 모델 적용 (Application of Failure Criteria in Aluminum Sheet Forming Analysis)

  • 김기정;;김대영;김헌영
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.167-172
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

성형해석을 이용한 프론트 필라의 성형 공법 개발에 관한 연구 (A Study of Tool Planning for FRT-PLR-L/R Stamping Process by using Forming Analysis)

  • 정동원;고대림
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.890-896
    • /
    • 2008
  • Sheet metal forming is one of the most useful and important method in manufacturing of the autobody panels because of the excellent production rate. The objectives of sheet metal forming processes are getting a desired geometrical shape of products with good quality, low cost and reasonable lead time. In this paper, we examined the validity of finite element method analysis on the automobile FRT-PLR-L/R stamping process by using the lancing engineering method. Lancing is a press operation in which a single-line cut or slit is made on part way across the strip stock, without removing any metal. As a result, it has shown that the proper lancing engineering method could prevent fracturing by improving sheet metal flow.

자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발 (A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy)

  • 최한호;구태완;황상문;강범수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계 (Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet)

  • 박기동;장정호;김세호;김기풍
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

CTBA Tubular Beam의 열간 성형해석 및 실험 (Hot Stamping Simulations and Experiments for CTBA Tubular Beams)

  • 서창희;김우성;성지현;박종규;김용식;김영석
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.13-19
    • /
    • 2015
  • For an accurate analysis of hot stamping, a coupled simulation with different aspects of the process(i.e. mechanical, thermal, and phase transformation) is needed. However, coupled simulations are time consuming and costly. Therefore, the current study proposes a simplified method focused on the forming for the hot stamping simulation of a coupled torsion beam axle (CTBA) tubular beam. In this simplified method, non-isothermal conditions were assumed and only conduction was considered, since it represents the majority of the heat transfer during hot stamping. In addition, temperature and strain rate effects were also included. Moreover, an isothermal simulation was conducted and compared with a non-isothermal simulation. Finally, the simulations were verified by experiments. In conclusion, the proposed method is shown to be effective for the development of tube-type parts, and it effectively predicts the deformation of the tubular beam during hot stamping.

자동차 내부 보강판 성형 금형 설계 (Design of Stamping Die for Inner Reinforcement Panel of Automotive)

  • 안동규;송동한;노경보;한길영
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.60-68
    • /
    • 2009
  • The objective of this paper is to design stamping die of inner reinforcement panel with DL 950 advanced high strength steel as stamping materials through numerical analyses and experiments. The stamping process was designed as bending dominant process consisting of 1 step of notching and 4 steps of bending processes. In order to obtain a proper design of the stamping die, various three-dimensional elasto-plastic finite element analyses were performed using a commercial code AUTOFORM V4.2. Design parameter of stamping die was chosen as the corner radius of the stamping die for each step. From the results of the FE analysis, feasible corner radii of the stamping die, which can minimize the deviation of corner angle of the stamped part from design data, and forming load for each part were estimated. Stamping experiments were carried out using the manufactured stamping die according to the proposed die design. The results of experiments were shown that the stamping die can successfully manufacture the inner reinforcement panel with DL 950 advanced high strength steel as base stamping material.

  • PDF

2중 성형에 의한 금속판재 딤플의 성형성 향상 (Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming)

  • 김하성;김민수;이형일;김낙수;김동철
    • 대한기계학회논문집A
    • /
    • 제37권7호
    • /
    • pp.841-849
    • /
    • 2013
  • 본 연구에서는, 핵연료 지지격자 딤플 굴곡부에 성형결함을 줄이고자, 1차 스탬핑 금형이 추가된 2-step 스탬핑모델을 제시한다. 우선 순수굽힘 변형률과의 비교로, 딤플 굴곡부 변형률의 특성을 조사한다. 이어 2 차원 1-step 기준 스탬핑 유한요소모델을 정하고 이에 상응하는 최대변형률을 구한다. 1 차 스탬핑 금형의 설계변수들을 각각 변화시켜 변형률에 대한 목적함수를 구하고, 반응표면법을 이용해 1차 스탬핑 금형의 최적 변수값을 선정한다. 다음으로 이를 3차원 모델에 적용해 2-step 스탬핑 모델의 향상된 성형성을 확인한다.