• Title/Summary/Keyword: Finite Element Human Head Model

Search Result 13, Processing Time 0.017 seconds

Analysis of the Micro-Structural and Mechanical Properties in Human Femoral Head Trabecular Bone with and without Osteoporosis (대퇴골두 해면골의 미세구조 특성과 기계적 특성의 분석)

  • Won Ye-Yeon;Baek Myong-Hyun;Cui WenQuan;Chun KeyoungJin;Kim Man Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.519-523
    • /
    • 2004
  • This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using Micro-CT and finite element-model. 15 cored trabecular bone specimens with 20min of diameter were obtained from femoral heads with osteoporosis (T-score > -2.5 ) resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indices. Based on obtained micro-images(pixel size=21.31㎛), a FE-model was created to determine mechanical property indices. While non-osteoporosis group had increases trabecular thickness, bone volume, bone volume fraction, degree of anisotropy and trabecular number compared with those of non-osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indices, reaction force, apparent stress and young's modulus were 1ower in osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.

Time-Multiplexed RF Transmission to Improve $B_1$ Homogeneity in High Field MRI

  • Han, Byung-Hee;Seo, Jeung-Hun;Heo, Hye-Young;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve $B_1$ homogeneity in high field MRI, the RF power is applied to the transmit array coil elements sequentially in the time-multiplexed way. Since only a single coil element is activated in a time-multiplexing slot, the global standing wave formation in the human body is greatly suppressed. The time-multiplexing slot width is on the order of micro seconds, hence, high-order-harmonic slices can be placed far from the transmit coil and simultaneous multiple slice selection can be avoided. The $B_1$ homogeneities of a birdcage coil and an eight-channel transmit array coil have been compared through finite difference time domain simulations. The simulation results indicate that the proposed technique can reduce the peak-to-peak $B_1$ inhomogeneity down to one fourth of the transmission with a birdcage coil on the central plane of the human head model at 3 T. The mimicking experiments at 3 T, eight separate experiments with a single coil element activated and image reconstruction by combining the eight images, also show promising results. It is expected that the proposed technique has some advantages over other $B_1$ improving methods in real practice since simple RF switching circuitries are only necessary and electromagnetic coupling between the coil elements is out of concern in its realization.

FEM Analysis of the Effects of Mouth guard material properties on the Head and Brain under Mandibular Impact (구강보호장치의 재료적인 특성이 하악골 충격 시악골 및 두부에 미치는 영향에 관한 유한요소분석)

  • Kang, Nam-Hyun;Kim, Hyung-Sub;Woo, Yi-Hyung;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • Statement of problem & Purpose: The purpose of this study was to investigate the effect of a mouth guard material properties on the skull and brain when they were under impact loads on mandible. Material and methods: Two customized mouth protectors having different material propeerst ieach other were made for a female Korean who had no history of brain trauma, no cerebral diseases, nomal occlusion and natural dentition. The 3D finite element model of human skull and brain scanned by means of computed tomography was constructed. The FEM model of head was composed of 407,825 elements and 82,138 nodes, including skull, brain, maxilla, mandible, articular disc, teeth and mouth guard. The stress concentrations on maxillary teeth, maxilla and skull with two mouth guards were evaluated under oblique impact load of 800N onto mandibular 3 loading points for 0.1sec. And the brain relative displacement was compared in two different mouth guard materials under same condition. Result and Conclusion: The results were as follows; 1. In comparison of von Mises stress on maxillary teeth, a soft mouth guard material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 2. In comparison of von Mises stress on maxilla and skull, A soft mouth protector material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 3. For impact loads on mandible, there were more stress concentrated area on maxilla and skull with hard mouth guard than soft with mouth protector. 4. For impact loads on mandible, brain relative displacement had little relation with mouth guard material properties. In results of this study, soft mouth guard materials were superior to hard mouth guard materials for mandible impact loads for prevention of sports injuries. Although the results of this study were not enough to figure out the roles of needed mouth guard material properties for a human head, we got some knowledge of the pattern about stress concentration and distribution on maxilla and skull for impact loads with soft or hard mouth protector. More studies are needed to substantiate the relationship between the mouth guard materials and sports injuries.