• 제목/요약/키워드: Finite Element Analysis of Forging

검색결과 284건 처리시간 0.024초

단조 금형의 수명 평가에 관한 연구 (A Study on Life Estimation of a Forging Die)

  • 최창혁;김용조
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

부유금형을 가진 냉간단조 공정의 유한요소해석 (Finite Element Analysis of a Cold forging Process Having a Floating Die)

  • 전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

단조하중 감소를 위한 열간 형단조공정 해석 (An Analysis of Hot Closed-Die Forging to Reduce Forging Load)

  • 김헌영;김중재;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

유한요소법을 이용한 냉간단조품의 치수 예측 (Finite Element Approach to Prediction of Dimensions of Cold Forgings)

  • 전병윤;강상명;박재민;이민철;박래훈;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load Is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

  • PDF

단조공정별 소성응력분포의 X.R.D 분석에 관한 연구 (Analysis of Forging Plastic Stress by X.R.D and F.E.M)

  • 전승경;김수연;김준형;이상걸
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.395-398
    • /
    • 2006
  • Forging is applied for many industrial fields. Also, it is applied to hose nipple. Stress and metal analysis is finding method of forging possibility and we predict this possibility by finite element forging analysis. But there are also many manufacturing procedure after forging, and metal texture is varied by additional heat treatment or coating. So this research is focused on the measuring and analysis of plastic residual stress distribution at overall manufacturing procedure. From raw material to final product we measured real residual stress at each manufacturing procedure by X ray diffract meter, and simulated another procedure except forging by nonlinear finite element analysis. Also we showed how Zn-Ni coating is more contributable to metal strength than Zn coating. By this research we make final conclusion that process analysis must be observed from raw material to final manufacturing state for robust design.

  • PDF

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

조향장치용 요크 자동다단 정밀냉간단조 공정에서 발생하는 스프링백의 수치적 및 실험적 검증 (Numerical and Experimental Study on Spring Back in Automatic Multi-Stage Precision Cold Forging Process of a Steering Yoke)

  • 김광민;김민철;황태민;정석환;정완진;전만수
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.115-122
    • /
    • 2019
  • In this paper, finite element analysis of an automatic five-stage precision cold forging process of a yoke, a steering part of a passenger's car, is conducted with emphasis on spring back analysis at the yoke-forming stage and its experimental verification is subsequently made. An elastoplastic finite element method with MINI-element technique employed for the analysis of the entire process is explained. There is emphasis that the thin film of material formed between the punch and die in the stage may result to some errors especially in elastoplastic finite element analysis of spring back due to frequent remeshing. The numerical robustness of the spring back analysis in regards to remeshing is hence shown first through investigation into its effect on the predicted spring back. Experimental measurement of displacement due to spring back is carried out for comparison with the predicted results, and they are in a qualitative agreement with each other.

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimensional and Three-Dimensional Approaches)

  • 이민철;전만수
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.155-160
    • /
    • 2008
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric or involve several axisymmetric processes.

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF