• Title/Summary/Keyword: Finite Element Analysis of Forging

Search Result 284, Processing Time 0.035 seconds

A Study on the Prediction of Void Closure in the Cogging Process of a Large Round Bar (대형 단조품 환봉 코깅 공정의 기공 압착 거동 예측에 관한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.75-78
    • /
    • 2008
  • The predictive equation of void-closure was developed to evaluate void crush ratio with respect to the process variables in the cogging process of a large round bar. The comprehensive finite element analysis with the process variables such as reduction ratio and die width ratio was carried out. The predictive equation of void-closure for cogging process was established on the basis of the regression analysis with the extensive FE analysis results and verified by comparing the predicted results with FEA results with various forging passes.

  • PDF

The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material (반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model (실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화)

  • Kang, Jung-Ho;Kang, Jin;Park, Young-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).

Die design system for deep drawing and ironing of high pressure gas cylinder

  • Yoon Ji-Hun;Choi Young;Park Yoon-So
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 2005
  • This paper describes a research work on the die design for the deep drawing & ironing(D. D. I) of high pressure gas cylinder. D. D. I die set is large-sized die used in horizontal press, which is usually composed of a drawing, and an ironing die. Design method of D. D. I die set is very different from that of conventional cold forging die set. Outer diameter of the die set is fixed because of press specification and that of the insert should be as small as possible for saving material cost. In this study, D. D. I die set has been designed to consider those characteristics, and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

Finite Element Analysis of Powdered Magnet Sinter-forging Processes considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 단조성형공정의 유한요소해석)

  • 이형욱
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.82-85
    • /
    • 1999
  • Permanent magnets of Nd-Fe-B group have kept a key post in the permanent magnet market and used in various parts. Tube Process is a process to produce permanent magnets using a deformable tube for denslfication of powder magnets. Advantage claimed for this process is that it can accomplish both densification and anisotropication in one step forming. In this paper. the simulation has been carried out for a full Tube Process in a closed Qe considering the compressibility of material, arbitrary curved shape and deformable body contact between Nd-Fe-B powder magnet and copper tube. The results show that the analysis of Tube Process is applicable with great help in the stage of preform design.

  • PDF

A Study on the Temperature-Diffusion Analysis of Induction Heating Jar (Induction Heating Jar의 온도분포 해석에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok;Lee, Bong-Seob;Lee, Young-Mee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.79-82
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, preheating for forging operations, melting or cooking. In this paper, it was presented the magneto-thermal analysis of an induction heating jar(IH-JAR) with the material value of the stainless and the aluminum for efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FEM) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was represented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

  • PDF

Development of the hot ring rolling processes for multilayered ring parts with a large outer diameter (외경이 큰 환형 부품의 다중형상 열간 링 롤링 공정의 개발)

  • Kim, Kyung-Ryool;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.952-962
    • /
    • 2015
  • In this study, multilayered rings with a large outer diameter have been developed using a hot ring rolling process. The ring rolling process has been analyzed by rigid plastic finite element analyses (FEA) using the AFDEX2D and AFDEX3D/HEXA/RING simulators, where the finite element meshes received severe plastic deformation are remeshed into a fine mesh-size using a dual-mesh system. According to the simulated results, the design variables of the multilayered rings were determined and real tests were conducted to check the validity of the simulation results. By adopting the hot ring rolling process, the input weight of raw materials was reduced by 40% against the conventional hot forging process and that the recovery rate was increased by 24%. The measurement of the averaged roundness was satisfied within 0.5 mm for both the inner and outer diameters. Moreover, the hot ring rolling processes yielded 1.49 Cpk for the outer-diameter and 0.84 Cpk 0.84 for the inner-diameter.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한 연구)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.563-568
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. The strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. The inner pressure of die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting, and can be applied in the die design for product with accurate dimension.

  • PDF

Design of Hexagonal Fitting Nut Preform Considering Ductile Fracture (연성파괴를 고려한 6각 피팅너트 예비성형체 설계)

  • Park T. J.;Kim D. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • In the multi-stage former, manufacture of hexagonal fitting nut was generated in a defective products about $70{\~}80\%$. Defective products reduced in a product stiffness and increased a product cost. Defects for manufacturing hexagonal fitting nut caused in a increase of ductile fracture value. So in the study, a preform designed to reduce ductile fracture value and designed preform verified through the finite element simulation. In conclusion, Ductile fracture value reduced if A round dimension of preform reduced and a part of opposition angle contributed in Plenty a volume.

  • PDF