• Title/Summary/Keyword: Finite Element Analysis of Forging

Search Result 284, Processing Time 0.027 seconds

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging (축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법)

  • 정낙면;이낙규;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1468-1484
    • /
    • 1992
  • In the present paper forward projection is proposed as a new approach to determine the preform shape in rib-web type forging. In the forward projection technique an optimal billet is determined by applying some mathematical relationship between geometrical trials in the initial billet shape and the final products. In forward projection a volume difference between the desired product shape and the final computed shape obtained by the rigid-plastic finite element method is used as a measure of incomplete filling of working material in the die. At first linear inter-/extrapolation is employed to find a proper trial shape for the initial billet and the method is successfully applied to some cases of different aspect ratios of the initial billet. However, when the initial guesses are not sufficiently near the optimal value linear inter-/extrapolation does not render complete die filling. For more general application, a fuzzy system is used in the forward projection technique in order to determine the initial billet shape for rib-web type forging. It has been thus shown that the fuzzy system is more reliable for the preform design in the rib-web type forging process.

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

3차원 강소성 유한요소해석을 사용한 전자부품의 정밀단조공정 설계

  • Park, Geun;Kang, Yeon-Sik;Yang, Dong-Yeol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.932-936
    • /
    • 1997
  • In order to increase the productivity of electrical parts, manufacturing processes using progressive die have been widely used in the industry. If closed-die forging process may be included in the series of the forming process, however, there arise many problems in the die design, such as determination of blank size, feeding method and formability, etc. For the proper design of a process, a prediction of the process is requred to obtain many design parameters. In this work, three-dimensional rigid-plastic finite element analysis is carried out to simulate precision forging process. The forging process of STEM, a part of photo pick-up hologram device, is simulated with the two types of processes, open die forging and semi-closed die forging, respectively. Form the results of analyses, the forging processes can be predicted successfully, which enables to design appropriately the die and the process.

  • PDF

Investigation of the Optimal Forging Condition in Open Die Forging with the Flat Die (평다이를 사용한는 자유 단조 공정의 최적 단조 조건에 관한 연구)

  • 조종래;김동권;이부윤;양동열
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.141-150
    • /
    • 1995
  • The purpose of the open die press forging is to maximize the internal deformation for better structural homogeneity and center-line consolidation in case of the ingot. A two and three dimensional viscoplastic finite element analysis is carried out for the plate, cylinder and square forging with the flat die in order to study the forging effects during the process. Effect of width, height reduction, and die staggering are studied through simulation of the process. Thus favorable working conditions are suggested for better and more disirable product quality.

  • PDF

A Study on the Elimination of Surface Defect and Increase in Tool Life of the Warm Forged Spider (온간 스파이더 표면결함 개선과 금형수명 향상에 관한 연구)

  • Kang, Jong-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-90
    • /
    • 2020
  • Due to the complicated shape of the spider, the production method was changed from cold to warm forging. Finite element analysis was performed to predict the forging load and shape using the enclosed hydraulic die set. As the forging load increases due to the spider die volume, die stress analyses were performed to optimize the die design in order to reduce the die stress in various conditions. Large deformation while producing the complicated forging parts induces high forging load, which is one of the main parameters of the forging surface defects. The forging process was analyzed to find out the root cause of the surface defects generated during the spider production for various parameters, thereby revealing that the radius of die in the defect zone influenced the air trap depth, being the root cause of the surface defect. It was verified that die life was increased and the surface defect was eliminated by changing the die design during the mass production test.

Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis (쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

Finite Element Analysis and Process Planning about the Auto Transmission Solenoid Valve using of Multi-Former (다단-포머를 이용한 오토트랜스 미션용 솔레노이드 밸브 공정설계 및 유한요소해석)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The process design of forward Extrusion and Upsetting of Axi-symmetric part has been studied in this paper. During the cold forging product; auto transmission Solenoid Valve part, the defects such as folding and under-fill can be appeared by the improperly controlled metal flow. In this study, to reduce the folding and under-fill the design of experiments has been used to find out the significant design variables in the design of forging process. This paper deals with an Process Planning with which designer can determine operation sequences even after only a little experience in Process Planning of Multi-Former products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge-base consisting of design rules is built. Based on the systematic procedure of process sequence design, the forming operation of cold forged auto transmission Solenoid Valve part is analyzed by the commercial Finite Element program, DEFORM/2D.

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.