• 제목/요약/키워드: Finite Element Analysis Modeling

검색결과 1,579건 처리시간 0.029초

PSC보 교량의 유한요소 모델링방법에 관한 연구 (An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges)

  • 김광수;박선규;김형열
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법 (Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem)

  • 송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-20
    • /
    • 2021
  • 본 논문에서는 유한요소법과 경계요소법을 결합하여 기하학적으로 급변 부위가 있는 이차원 탄성 정적 문제에 대하여 효율적이고 정확한 해석 결과를 얻기 위한 유한요소법과 경계요소법의 근사 결합 방법을 제시한다. 이차원 문제의 유한요소로서는 3절점, 4절점 평면응력 요소를 적용하고, 이차원 문제의 경계요소로는 3절점 경계요소를 적용한다. 모델링 단계에서는 우선 전체 해석 대상을 유한요소로 모델링한 후에 기학학적 급변 부위를 경계요소로 모델링 하는데, 유한요소의 모델링을 위하여 정의된 절점을 이용하여 경계요소를 정의한다. 해석 단계에서는 전체 해석 대상에 대하여 유한요소 해석을 우선적으로 수행하고, 이후에 경계요소 해석을 자동으로 수행하는데, 경계부에서의 경계조건은 유한요소 해석 결과인 변위 조건과 응력 조건을 적용한다. 수치예제로서 이차원 탄성 정적 문제인 균열이 있는 평판에 대한 해석 결과를 제시하고 고찰한다.

유한요소해석과 기하학적 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계 (Shape Optimization of Shell Surfaces Based on Linkage Framework betweenGeometric Modeling and Finite Element Analysis)

  • 김현철;노희열;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1328-1333
    • /
    • 2003
  • In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. Geometric modeling is based on B-spline surface representation. Geometrically-exact shell finite element is implemented in analysis module. Control points of the surface are selected as design variables for optimization, which can make the interaction easier between analysis and surface representation. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. For the computation of shape sensitivities, semi-analytical method is used. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

  • PDF

영구자석형 직류전동기 축계의 유한요소모델 개선과 진동해석 (Finite Element Model Updating and Vibration Analysis of PMDC Motor Rotor System)

  • 김용한;하종룡;이재갑;김선화;양보석
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.20-27
    • /
    • 2007
  • In this paper, finite element modeling was performed for vibration analysis of a rotor system installed in sunroof motor, and analysis process was developed for natural frequency and unbalance response analysis. At the same time, to reduce analysis modeling error caused by the difference between analysis and measured values, finite element model updating was conducted using an optimization algorithm, i.e. hybrid genetic algorithm and simulated annealing (HGASA) method. For this end experimental modal test was carried out and by using the measured frequency response function (FRF), model updating was performed considering both cases where core coil was removed and included. And acceptable result was obtained. Also, dynamic property coefficient of bush bearing which influences vibration response of the rotor system was estimated.

  • PDF

3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로) (A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling))

  • 이재영;이진휴;한상기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

NATM 터널의 응력-간극수압 연계 유한요소모델링 (Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling)

  • 유충식;김선빈
    • 한국지반공학회논문집
    • /
    • 제22권10호
    • /
    • pp.5-20
    • /
    • 2006
  • 본 논문에서는 지하수위 하에서 터널이 시공되는 조건을 대상으로 응력-간극수압 연계 유한요소해석 수행시 모델링 측면에서 중요하게 다뤄져야 하는 내용을 고찰하였다. 먼저 연계해석 수행시 요구되는 지하수위 저하와 지반거동과의 관계에 대한 배경 이론을 알아보았으며, 이를 토대로 모델링 측면에서 해석결과에 영향을 미칠 수 있는 다양한 인자들을 선정하고, 선정된 영향인자에 대한 매개변수 연구를 수행하였다. 지하수위 저하가 동반되는 터널 시공조건에서의 유한요소석 모델링 결과는 지반의 불포화특성 고려여부가 가장 큰 영향을 미치는 것으로 나타났으며 본 고에서는 결과를 종합하여 연계해석 모델링시 중요하게 검토되어야 고려사항을 제시하였다.

STEP을 이용한 유한요소해석 정보모델 구축 (Information Modeling for Finite Element Analysis Using STEP)

  • 최영;조성욱;권기억
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.48-56
    • /
    • 1998
  • Finite element analysis is very important in the design and analysis of mechanical engineering. The process of FEA encompasses shape modeling, mesh generation, matrix solving and post-processing. Some of these processes can be tightly integrated with the current software architectures and data sharing mode. However, complete integration of all the FEA process itself and the integration to the manufacturing processes is almost impossible in the current practice. The barriers to this problem are inconsistent data format and the enterprise-wise software integration technology. In this research, the information model based on STEP AP209 was chosen for handling finite element analysis data. The international standard for the FEA data can bridge the gap between design, analysis and manufacturing processes. The STEP-based FEA system can be further tightly integrated to the distributed software and database environment using CORBA technology. The prototype FEA system DICESS is implemented to verify the proposed concepts.

  • PDF

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동 (Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation)

  • 최진복;노희열;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Finite Element Modeling of Piezoelectric Sensors and Actuators based on Timoshenko Beam Theory

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, a new smart beam finite element is proposed for the finite element modeling of the beam-type smart structure with bonded plate-type piezoelectric sensors and actuators. Constitutive equations far the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The presented 2-node beam finite element is isoparametric element based on Timoshenko beam theory. The validity of the proposed beam element is shown through comparing the analysis results of the verification examples with those of other previous researches. Therefore, by analyzing smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by piezoelectric actuators with applied voltages and the monitoring of the structure behavior by piezoelectric sensors with sensed voltages.

  • PDF