• Title/Summary/Keyword: Finite Element Analysis ANSYS 5.5

Search Result 186, Processing Time 0.025 seconds

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

The compression-shear properties of small-size seismic isolation rubber bearings for bridges

  • Wu, Yi-feng;Wang, Hao;Sha, Ben;Zhang, Rui-jun;Li, Ai-qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • Taking three types of bridge bearings with diameter being 100 mm as examples, the theoretical analysis, the experimental research as well as the numerical simulation of these bearings is conducted. Since the normal compression and shear machines cannot be applied to the small-size bearings, an improved equipment to test the properties of these bearings is proposed and fabricated. Besides, the simulation of the bearings is conducted based on the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearings are modified in the finite element model to reduce the computation cost effectively. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearings.

Structural analysis of a prestressed segmented girder using contact elements in ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2017
  • Studying the structural behavior of prestressed segmented girders is quite important due to the large use this type of solution in viaducts and bridges. Thus, this work presents a nonlinear three-dimensional structural analysis of an externally prestressed segmented concrete girder through the Finite Element Method (FEM), using a customized ANSYS platform, version 14.5. Aiming the minimization of the computational effort by using the lowest number of finite elements, a new viscoelastoplastic material model has been implemented for the structural concrete with the UPF customization tool of ANSYS, adding new subroutines, written in FORTRAN programming language, to the main program. This model takes into consideration the cracking of concrete in its formulation, being based on fib Model Code 2010, which uses Ottosen rupture surface as the rupture criterion. By implementing this new material model, it was possible to use the three-dimensional 20-node quadratic element SOLID186 to model the concrete. Upon validation of the model, an externally prestressed segmented box concrete girder that was originally lab tested by Aparicio et al. (2002) has been computationally simulated. In the discretization of the structure, in addition to element SOLID186 for the concrete, unidimensional element LINK180 has been used to model the prestressing tendons, as well as contact elements CONTA174 and TARGE170 to simulate the dry joints along the segmented girder. Stresses in the concrete and in the prestressing tendons are assessed, as well as joint openings and load versus deflection diagrams. A comparison between numerical and experimental data is also presented, showing a good agreement.

Analysis of Welding Residual Stresses and Heat Treatment used by Finete Element Method (유한요소법을 이용한 용접 잔류응력과 열처리 해석)

  • Lee, Bong-Yeol;Jo, Jong-Rae;Mun, Yeong-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.334-339
    • /
    • 2003
  • The welding residual stress has on important effect on welding deformation, fatigue fracture, buckling strength, brittle fracture, etc. For the purpose of relaxation of welding residual stress, post welding heat treatment is widely used. In this paper, residual stresses were calculated by two dimensional thermal elasto-plastic analysis using finite element method. Heat transfer analysis are performed by transient analysis. Also structure analysis are carried out by of thermal-mechanical coupled analysis. Numerical analysis are used by ANSYS 5.7.

  • PDF

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam

  • Huang, Ying;Zou, Haoran;Chen, Changhong;Bai, Songlin;Yao, Yao;Keer, Leon M.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.617-629
    • /
    • 2019
  • Based on the finite element method of traditional straight Euler-Bernoulli beams and the coupled relations between linear displacement and angular displacement of a pre-twisted Euler-Bernoulli beam, the shape functions and stiffness matrix are deduced. Firstly, the stiffness of pre-twisted Euler-Bernoulli beam is developed based on the traditional straight Euler-Bernoulli beam. Then, a new finite element model is proposed based on the displacement general solution of a pre-twisted Euler-Bernoulli beam. Finally, comparison analyses are made among the proposed Euler-Bernoulli model, the new numerical model based on displacement general solution and the ANSYS solution by Beam188 element based on infinite approach. The results show that developed numerical models are available for the pre-twisted Euler-Bernoulli beam, and which provide more accurate finite element model for the numerical analysis. The effects of pre-twisted angle and flexural stiffness ratio on the mechanical property are investigated.

Simulation of Piezoelectric Dome-Shaped-Diaphragm Acoustic Transducers

  • Han, Cheol-Hyun;Kim, Eun-Sok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • This paper describes the simulation of a micromachined dome-shaped-diaphragm acoustic transducer built on a $1.5{\mu}m$ thick silicon nitride diaphragm ($2,000{\mu}m$ in radius, with a circular clamped boundary on a silicon substrate) with electrodes and piezoelectric ZnO film in a silicon substrate. Finite element analysis with ANSYS 5.6 has been performed to analyze the static and dynamic behaviors of the transducer under both pressure and voltage loadings.

Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers (SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석)

  • 김옥삼;구본권;김일수;김인권;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Analysis and Control of the Flexible Multibody System Using MATLAB (MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.