• Title/Summary/Keyword: Finite Element Analysis(FEA)

Search Result 1,116, Processing Time 0.025 seconds

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

A Study on the Torque Characteristics Depending on the Elastic Body Materials of a Hexadecagon Shaped Ultrasonic Motor (탄성체 재질 변화에 따른 16각형 초음파모터의 토크 특성 연구)

  • Cheon, Seong-Kyu;Jeong, Seong-Su;Lee, Byung-Ha;Ha, Yong-Woo;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, novel ultrasonic rotary motor of hexadecagon shape stator was proposed. Stator of the hexadecagon ultrasonic motor was composed of an elastic ring and ceramics. The elastic ring had sixteen sides and sixteen angular points. Eight ceramics were attached on the outer surface of the eight sides of the ring. When rotor of cylindrical shaft was inserted inside of the ring stator, central lines of the sixteen sides of the stator hold the shaft by the slight pressures(frictions). This slight pressure was a preload of the motor and it could be controlled by radius and thickness of the ring. When two sinusoidal voltages which have 90 degree phase difference were applied to each four ceramics, elliptical displacements of inner surface of the ring were obtained. These elliptical displacements of the inner surface rotated the shaft rotor through the frictions. The proposed hexadecagon ultrasonic motor was designed and analyzed by using the finite element method (FEM), depending on materials of the elastic ring. Based on the FEM results, one model of motor which showed maximum displacement at contact points was chosen and fabricated. And characteristics of the motor were compared with simulated results. When the motor was fabricated with these results, EL20ET0.5CT0.5CW2 model showed 115[rpm] speed about input voltage of 60[Vrms] at 65.6[kHz]. And the maximum torque of 6[gfcm] was obtained. From these results, the hexadecagon shaped ultrasonic motor can be used to actuator for optical device which needs detailed position control. Also it can be used to medical and portable device by reducing size and weight.

Characteristic of Buckling and Ultimate Strength of the Perforated Stiffened Plate (유공보강판의 좌굴 및 극한강도 특성에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Oh Kyoung-Gun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.439-446
    • /
    • 2006
  • In ship structures many of the structural plates have cutouts, for example, at inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has a cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed In general, actual ship structure adopted reinforcement of stiffener around the cutout in order to preventing from buckling so it need to examine a buckling and ultimate strength behaviour considering a cutout because In many ship yards used class rule for calculating buckling strength but it is difficult to evaluate perforate stiffened plate with random size. In the present paper, we investigated several kinds of perforated stiffened model from actual ship and then was performed finite element series analysis varying the cutout ratio, web height, thickness and type of cross-section using commercial FEA program(ANSYS) under compressive load.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Design and Evaluation of Ultrasonic Bone Surgical Instruments for Dental Application (치과용 초음파 골수술기 설계 및 평가)

  • Lee, Joo-Hee;Oh, Jung-Min;Hong, Younwoo;Kim, Seiki;Paik, Jonghoo;Lee, Young-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.990-995
    • /
    • 2012
  • A piezoelectric ultrasonic bone surgical instrument, usually used to remove the tartar out of teeth or to cut the dentine of the tooth, is a recently popular instrument for dental treatment due to its several merits such as small size, low-electric power and precision control of surgical operation. It has typically two parts of a tip and vibration system which is also composed of head, piezoelectric elements and tail-mass. In order to improve the performance of the instrument, it is important to standardize the size of the vibration system without tip for high performance. In this study, a Finite Element Analysis (FEA) was utilized to optimize the structure of ultrasonic instrument in vibration system. Consequently, this study revealed that influence of several tips on property were minimized and it showed good property at the frequency range of 22~32 kHz.

Effects of crown retrieval on implants and the surrounding bone: a finite element analysis

  • Ozkir, Serhat Emre;Unal, Server Mutluay;Yurekli, Emel;Guven, Sedat
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • PURPOSE. The aim of this study was to observe stress concentration in the implant, the surrounding bone, and other components under the pull-out force during the crown removal. MATERIALS AND METHODS. Two 3-dimensional models of implant-supported conventional metal ceramic crowns were digitally constructed. One model was designed as a vertically placed implant ($3.7mm{\times}10mm$) with a straight abutment, and the other model was designed as a 30-degree inclined implant ($3.7mm{\times}10mm$) with an angled abutment. A pull-out force of 40 N was applied to the crown. The stress values were calculated within the dental implant, the abutment, the abutment screw, and the surrounding bone. RESULTS. The highest stress concentration was observed at the coronal portion of the straight implant (9.29 MPa). The stress concentrations at the cortical bone were lower than at the implants, and maximum stress concentration in bone structure was 1.73 MPa. At the abutment screws, the stress concentration levels were similiar (3.09 MPa and 3.44 MPa), but the localizations were different. The stress at the angled abutment was higher than the stress at the straight abutment. CONCLUSION. The pull-out force, applied during a crown removal, did not show an evident effect in bone structure. The higher stress concentrations were mostly observed at the implant and the abutment collar. In addition, the abutment screw, which is the weakest part of an implant system, also showed stress concentrations. Implant angulation affected the stress concentration levels and localizations. CLINICAL IMPLICATIONS. These results will help clinicians understand the mechanical behavior of cement-retained implant-supported crowns during crown retrieval.

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.