• Title/Summary/Keyword: Finite Element Analyses

Search Result 2,418, Processing Time 0.023 seconds

Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method (유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels

  • Gulsan, Mehmet Eren;Cevik, Abdulkadir;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.279-304
    • /
    • 2015
  • In this study, reliability analyses of steel fiber reinforced concrete (SFRC) corbels based on stochastic finite element were performed for the first time in literature. Prior to stochastic finite element analysis, an experimental database of 84 sfrc corbels was gathered from literature. These sfrc corbels were modeled by a special finite element program. Results of experimental studies and finite element analysis were compared and found to be very close to each other. Furthermore experimental crack patterns of corbel were compared with finite element crack patterns and were observed to be quite similar. After verification of the finite element models, stochastic finite element analyses were implemented by a specialized finite element module. As a result of stochastic finite element analysis, appropriate probability distribution functions (PDF's) were proposed. Finally, coefficient of variation, bias and strength reduction (resistance) factors were proposed for sfrc corbels as a consequence of stochastic based reliability analysis.

Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate

  • Lee, Dongkyu;Park, Sungsoo;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.469-488
    • /
    • 2008
  • Finite element methods have often been used for structural analyses of various mechanical problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties in the initial data such as structural parameters and loading conditions may result in uncertainties in the structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable structural analysis results. The typical finite element method may not properly represent discrete systems when using uncertain data, since all input data of material properties and applied loads are defined by nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for evaluating the uncertainties of the initial data in structural analyses. According to this method, the element stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and interval change functions are devised. Numerical uncertainties in the initial data are described as a tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that structural safety can be included in the design. Numerical applications of truss and frame structures demonstrate the efficiency of the present method with respect to numerical analyses of structural uncertainties.

Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face (균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Gang, Gi-Ju;Beom, Hyeon-Gyu;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

Finite Element Analysis of Slab Deformation under the Width Reduction in Hot Strip Mill (열간압연 폭압하시 슬래브 변형거동의 유한요소해석)

  • 천명식;정제숙;안익태;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.668-674
    • /
    • 2003
  • Rigid-plastic finite element analyses on the deformation of slabs at various width reductions have been performed. By using commercial finite element code, dog-bone profile, crop profile and the longitudinal width profile after edging and Horizontal rolling have been analysed. The deformation behavior of slab for the heavy edger mill has also been compared with that for the sizing press. From the deformation analyses, it was found that the sizing press-horizontal rolling method is more efficient in width reduction than that of heavy edger mill-horizontal rolling. The results of finite element analyses fer the deformation of slab were well confirmed by the actual operational data. It was found that the amount of width variation after sizing and rolling is about 5∼10mm.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Footing settlement formula based on multi-variable regression analyses

  • Hamderi, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • The formulas offered so far on the settlement of raft footings provide only a rough estimate of the actual settlement. One of the best ways to make an accurate estimation is to conduct 3-dimensional finite element analyses. However, the required procedure for these analyses is comparatively cumbersome and expensive and needs a bit more expertise. In order to address this issue, in this study, a raft footing settlement formula was developed based on ninety finite element model configurations. The formula was derived using multi-parameter exponential regression analyses. The settlement formula incorporates the dimensions and the elastic modulus of a rectangular raft, vertical uniform pressure and soil moduli and Poisson's ratios up to 5 layers. In addition to this, an equation was offered for the estimation of average deflection of the raft. The proposed formula was checked against 3 well-documented case studies. The formula that is derived from 3D finite element analyses is useful in optimising the raft properties.