• Title/Summary/Keyword: Finite Deformation

Search Result 3,003, Processing Time 0.032 seconds

A Study on the Thermal deformation during Heat-Treatment (열처리시의 열변형에 관한 연구)

  • Jang J. W.;Kim D. J.;Kang J. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.161-166
    • /
    • 2001
  • The distortion and fracture of heat treated components is a major industrial problem, which may considerably increase the costs of operations that involve high cooling rates. And also, thermal deformation would be generated during Heat Treatment. In this paper, the purpose is to check out the thermally deformed components during heat treatment and to analyze thermal deformation and thermal stress by two dimensional Finite Element Method. And two dimensional FEM program is evaluated for heat transfer and thermal deformation.

  • PDF

Flexibility Analysis of 4-Bar Linkage Mechanism (4절 링크기구의 유연성 해석)

  • 조선휘;박종근;한성현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Analysis of Thermal Stress and Deformation of Casting Roll in Twin Roll Strip Casting Process (쌍롤형 박판주조공정에서 주조 롤의 열응력 및 열변형 해석)

  • Park, Cheol-Min;Kim, Wan-Su;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1943-1951
    • /
    • 2002
  • The casting roll design is one of the most important requirements in twin roll strip casting process. Coupled analyses of heat transfer and deformation for the cast roll are carried out by use of the finite element program MARC to examine the thermal stress and deformation. The effects of several factors on thermal stress and deformation are also investigated. The amount of thermal stress increases when the ni thickness increases and when the casting speed and the copper sleeve thickness decrease.

Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process (냉연 판재의 권취공정에 있어서 장력/열/변형 해석)

  • 정영진;이규택;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM - Part I: Approach (유한요소법을 활용한 평판압연에서의 롤 판 연계 해석 - Part I: 접근법)

  • Park, H.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.228-233
    • /
    • 2017
  • In flat rolling mills, demands for precise process set-up and control are increasing than ever before. Consequently, it is imperative to establish a novel approach, which would provide valuable information regarding the detailed aspects of deformation behavior of the strip, and rolls during rolling. In this paper, we present a finite element (FE) approach for 3-D coupled analysis of the elastic-plastic deformation of the strip and the elastic deformation of rolls in the roll-stack of a mill stand.

Prediction of Welding Deformation of Ship Hull Blocks

  • C. D. Jang;Lee, C. H.
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • Welding deformation reduces the accuracy of ship hull blocks and decreases productivity due to the need for correction work. Preparing an error-minimizing guide at the design stage will lead to higher quality as well as higher productivity. Therefore, developing a precise method to predict the weld deformation is an essential part of it. This paper proposes an efficient method for predicting the weld deformation of complicated structures based on the inherent strain theory combined with the finite element method. A simulation of a stiffened panel confirmed the applicability of this method to simple ship hull blocks.

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing (탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Donghyun Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

Elastic Finite Element Analysis for a Flexible Beam Structure. (유연한 보구조물의 탄성유한요소해석)

  • Jung, Dong-Won;Lim, Sae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3441-3453
    • /
    • 1996
  • A finite element anlaysis is performed for large deformations of a felxible beam. The total Lagrangian formulation for a general large deformation, which involves finite rotations, is chosen and the exponential map is used to treat finite rotations from the Eulerian point of view. The finite elements results are confirmed for several cases of deformations through comparison to a first order elasticity solution obtained by numerical integration, and the agreement between the two is found to be excellent. For lateral buckling, the point of vanishing determinant of the resulting unsymmetric tangent stiffness is traced to examine its relationship to bifurcation points. It is found that the points of vanishing determinant is not corresponding to bifurcation points for large deformation in general, which suggests that the present unsymmetric tangent stiffness is not an exact first derivative of internal forces with respect to displacement.