• Title/Summary/Keyword: Finite Cylinder

Search Result 596, Processing Time 0.025 seconds

FE Analysis on the Screwed Safety of a Valve for a LPG Bombe (LPG 용기용 밸브의 체결안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Oh, Kyong-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.79-84
    • /
    • 2007
  • In this paper, the finite element analysis of a valve screw for a LPG cylinder has been presented on the leakage safety and strength one, which are computed and investigated by a contact normal stress and von Mises stress between a female screw of a valve and a male screw of a neck ring in a LPG bombe. The LP gas charging pressure of a LPG bombe is $8{\sim}9kg/cm^2$, which is pressurized to the screw sealing contact areas between a valve and a LP gas cylinder. The peak failures of the screw tooth height due to a scratch wear and chipping loss of the contact area may decrease screw tooth strength and increase a leakage of a LP gas. These are strongly affect to the contact normal and von Mises stresses of the valve screws. The FEM computed results show that the tooth height loss due to a wear and chipping failure of the screw peak does not affect to the LP gas leak and strength of a valve screw theoretically. But if the tooth wear of the screw height of a brass valve overpasses the critical strength safety of the valve, the valve screw may be failed in fastening the valve and a LP gas bombe suddenly.

  • PDF

Dome Shape Design and Performance Evaluation of Composite Pressure Vessel (복합재 압력용기의 돔 형상 설계 및 성능 평가)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun;Doh, Young-Dae;Moon, Soon-Il
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • Dome shape design methods of Filament Winding (FW) composite pressure vessel, which can suggest various dome contour according to the external loading conditions, were investigated analytically and numerically. The performance indices(PV/W) of the pressure vessels with same cylinder radius and boss opening but different dome shape were evaluated by finite element analysis under the internal pressure loading condition. The analysis results showed that as the dome shape becomes flat, the performance index decreases significantly due to the reduced burst pressure. Especially, for the case of the high value of the parameter ro, the ratio between the radii of the cylinder part and the boss opening, the flat dome is disadvantageous in the aspect of the weight reduction, and additional reinforcing dome design technique should be required to increase the burst pressure. For example, above ro=0.54 condition, the dome shape change according to the loading condition could cause the low burst pressure and increase of composite weight in dome region and is not recommendable except for the special case that maximum inner volume or sufficient space between skirt and dome is the primary design objective. However, at ro=0.35, the dome shape change brings not so significant differences in the performance of FW vessel.

Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)

  • Chen, Jiangang;Su, Zhongqing;Cheng, Li;Ta, De-An
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.501-518
    • /
    • 2013
  • Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery, modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/${\lambda}$ <1 for HVG mode and RoC/${\lambda}$ <2 for LVG mode (RoC/${\lambda}$: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

On the Structural Analysis Using the Isogeometry Analysis Approach (등기하 해석법을 이용한 구조해석)

  • Lee, Joo-Sung;Chang, Kyoung-Sik;Roh, Myoung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In the present work, isogeometric analysis in linear elasticity problem is conducted using the basis functions from NURBS. The objectives of isogeometric analysis introduced is to integrate both geometric modeling(CAD) and computational analysis(CAE), and this can be accomplished from direct usage of geometric modeling by NURBS as the computational mesh. The merit of the isogeometry analysis is that NURBS surface are able to represent exact geometry from the control points and knot vectors, and also subsequent refinement is relatively simple relatively. In order to verify the computer codes developed in this study, it has been applied to two structural models of which geometry are simple ; 1) circular cylinder subjected to the constant internal pressure loading, 2) square plate with circular hole at center subjected to uniform tension. The exact solutions of these two models are available. Convergence of the approximate solutions by the present code for the isogeometry analysis are investigated by mesh refinement with inserting knots (h-refinement) and by mesh refinement with order elevation of the basis functions (p-refinement).

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks (축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Choi, Shin-Beom;Yu, Je-Yong;Kim, Ji-Ho;Choi, Suhn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

A Study of Semi Fine-blanking Mold Analysis using Finite Element Method (유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구)

  • Lee, Sang-Hun;Song, Gi-Hwan;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.