• 제목/요약/키워드: Finite Cylinder

검색결과 596건 처리시간 0.028초

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • 한국해양공학회지
    • /
    • 제34권1호
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성 (Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens)

  • 박병선;조성호;이상헌;강태호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF

이중원관의 냉각과정에 미치는 과냉각의 영향 (Effect of supercooling on the cooling in horizontal cylindrical annuli)

  • 윤정인;김재돌
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3313-3321
    • /
    • 1996
  • A fundamental study in cooling and solidification process focused on ice storage was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation in the cooling and freezing processes with supercooling in a space between double cylinders. When water was cooled under the freezing point by a cooling wall in a cavity, solidification was not started at once, but a subcooled region was formed near the wall. Especially, when the cooling rate was low, subcooled region extended to a wide area. However, after a few minutes, supercooling is released by some triggers. Dendritic ice is suddenly formed within a subcooled region, and a dense ice layer begins to be developed from the cooling wall. Due to the difficulties, most previous studies on solidification process with numerical methods had not treated the supercooling phenomena, i.e. the case considering only the growth of dense ice. In this study, natural convection and ice formation considering existence of supercooling and dendritic ice were analyzed numerically with using finite difference method and boundary fixing method. The results of numerical analysis were well compared with the experimental results.

육각볼트 헤드 단조를 위한 분할금형설계 (A Split Die Design for Forging of Hexagonal Bolt Head)

  • 추연근;조해용
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.

굴곡진 실린더형 캡슐 형상의 축열·방열 성능 해석 (Analysis of the Charging and Discharging Performance of a New Wavy Cylindrical Shape Capsule)

  • 홍상우;이용태;정재동
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.301-307
    • /
    • 2014
  • This paper presents a numerical study on the constrained melting of a phase change material inside various capsule containers, using water and HDPE (High Density Polyethylene) as a PCM and a capsule material, respectively. The computations are based on an iterative, finite-volume numerical procedure that incorporates a single-domain enthalpy formulation for simulation of the phase change phenomenon. Using the enthalpy method, various capsule configurations, such as a capsule from E company, an isochoric cylinder capsule, an equivalent diameter sphere capsule, and an isochoric sphere capsule, are used to investigate the effect of capsule configurations on the charging and discharging performance. A transient three-dimensional model is used for each case. The simulation results show that the capsule from E company results in a higher melting and solidification rate of the PCM, than the other capsule configurations considered in this research.

MODE CONTROL OF GUIDED WAVE IN MAGNETIC HOLLOW CYLINDER USING ELECTROMAGNETIC ACOUSTIC TRANSDUCER ARRAY

  • FURUSAWA, AKINORI;KOJIMA, FUMIO;MORIKAWA, ATSUSHI
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.196-203
    • /
    • 2015
  • The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

퀜칭시 나트륨계 수용액의 냉각성능에 관한 연구 (A Study on the Coolingability of Sodium Aqueous Solutions by Quenching)

  • 김옥삼;최은순;민수홍
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.224-232
    • /
    • 1992
  • Coolingability of coolants is important factor in cooling processor heat treatment of steel. Using standard apparatus and method defined in the Korean Industrial Standard three different shapes of probe were designed, ie, cylinderical, spherical and square on shape with same volume of standard probe. Distilled water and sodium aquious solutions with different concentration of NaOH, NaCl and $Na_2CO_3$ were examined. Estimation of coolingability of each quenchants for the probes of cylinderical, spherical or square shape, the cooling rate is greater square, cylinder and sphere in order. Coolingability of sodium aquious solution of NaCl, $Na_2CO_3$ and NaOH is found generally greater then that of distilled water. Effectiveness of ingredients is in the order of $Na_2CO_3$, NaOH and NaCl. In both solutions coolingability increases in 20%, 5%, and 10%in order. Analytical results obtained from Finite Element Method were compared with experimental ones and found as practically satisfactional.

  • PDF

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).

파단전누설 해석 및 균열거동 평가를 위한 축방향 경사관통균열의 탄성 응력확대계수 및 균열열림변위 (Estimation of Elastic Fracture Mechanics Parameters for Slanted Axial Through-Wall Cracks for Leak-Before-Break and Crack Growth Analysis)

  • 허남수;심도준;최순;박근배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.725-726
    • /
    • 2008
  • This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed 3-dimensional (3-D) elastic finite element (FE) analyses. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the center of the crack were provided. These values were also tabulated for three selected points, i.e., the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed Leak-Before-Break analysis considering more realistic crack shape development.

  • PDF

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.