• 제목/요약/키워드: Finisher Die Design

검색결과 14건 처리시간 0.019초

단류선을 고려한 베어링 허브의 열간 단조 공정설계 (The Process Design for Hot Forging of Bearing Hub Considering Flow Line)

  • 변현상;노현영;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계 (Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine)

  • 황범철;이우형;배원병;김철
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가 (Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk)

  • 차도진;김동권;김영득;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

헬리컬기어 블랭크 열간단조의 유한요소해석 (Finite-Element Analysis of a Helical-Gear Blank Hot-Forging)

  • 안승우;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.180-187
    • /
    • 1995
  • Helical gears are machined from blanks, which are usually prepared by forging cylindrical billets at high temperatures through buster, blocker and finisher processes. As dimensions of the blank are closer to those of the machined part, machining cost can be more reduced. Therefore, there are a lot of efforts being made to optimize the forging processes in order to produce near-net shaped blanks. In the present investigation, a rigid viscoplastic finite element technique was used to analyze a helical gear blank hot forging processes and deformation, strain and temperature distributions, forging load variations during forging were obtained. In the paper, it is discussed how these results can be utilized to optimize die design, billet dimensions and press usage.