• 제목/요약/키워드: Finish Machining

검색결과 162건 처리시간 0.024초

연삭기용 자기베어링 주축계의 고속화에 관한 연구 (Design of a Magnetic Bearing System for a High Speed Grinding Spindle)

  • 박종권;노승국;안대균
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.233-243
    • /
    • 1998
  • The demand of high speed machining is increasing due to the high speed cutting and grinding provides high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting or grinding. This paper describes a design process of an active magnetic bearing system for a high speed grinding spindle with power 5.5kW and maximum speed 60,000rpm. Magnetic actuators are designed by the magnetic circuit theory considering static load condition, and examined with FEM analysis. Dynamic characteristics are also considered, such as bandwidth, stiffness, natural frequency and static deflection. System characteristics are simulated with a rigid rotor model.

  • PDF

고기능성 부품가공용 지능형 연삭시스템 연구개발 현황 (Development of Inteligent Grinding System far High Performance Part)

    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.46-51
    • /
    • 2002
  • A grinding technology is very essential to finish the surface of IT and BT industrial application parts such as wafer, optical connection part and lenses etc. However the finding machine has bead depended on imports. Especially, it is completely imported for machining high precision part relevant to domestic electric and communicational industries. The amount to import grinding machine is about $110milions. It takes about 35% of total import amount of all the machine tools. A domestic finder manufacturer is a very small-scaled bussinessman and research facilities is poor. Recently, it is increasing to demand high speed and precision grinding technology because it brings cost down and value added up. Its further study will be something related to inteligent grinding system fur value added and high precision part. It will make domestic grinding technology to its advanced country level.

  • PDF

Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구 (A study on the 3-D CNC cutting planning and simulation by Z-Map model)

  • 송수용;김석일
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

면삭밀링가공시 공구 부절삭날 마모길이의 퍼지적 평가 (Fuzzy estimation of minor flank wear in face milling)

  • 고태조;조동우
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.28-38
    • /
    • 1995
  • The flank wear at the minor cutting edge significantly affects the geometric accuracy and surface roughness in finish machining. A fuzzy estimator based on a fuzzy inference algorithm with a max-min composition rule is introduced to evaluate the minor flank wear length. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration signal. These features, dispersions, are used for constructing linguistic rules, and then the fuzzy inferences are carried out with test data sets collected under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length.

  • PDF

채터진동의 인프로세스 감시를 위한 실시간 복합계측 시스템(1) (Real-time Multi-sensing System for In-process monitoring of Chatter Vibration(l))

  • 김정석;강명창;박철
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.50-56
    • /
    • 1995
  • Chatter Vibration is an unwanted phenomenon in metal cutting and it always affects surface finish, tool life, machine life and the productivity of machining process. The real-time detection of the chatter vibration is is necessarily required to automation system. In this study, we constructed the multi-sensing system using Tool Dynamometer, Accelermeter and AE sensor. Especially, Acoustic Emission(AE) generated during turning was investigated the possibility for real-time detection of chatter vibration. Turning experiments were performed using carbide insert tip under realistic cutting conditions and tapered workpiece of SM45C. Consquently, the real-time detection using multi-sensing system can be used for Inprocess monitoring of chatter vibration.

  • PDF

워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선 (Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet)

  • 손성균;한솔이;성인하;김욱배
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1159-1165
    • /
    • 2013
  • 파우더 블라스팅은 미세 유리가공법으로서 가공속도가 빠르고 저비용의 장점이 있지만 유리를 취성파괴 시키기 때문에 표면거칠기가 좋지않다. 블라스팅된 표면에 저압의 워터젯을 분사하여 표면에서의 연마 슬러리의 흐름을 통해 표면거칠기를 저감할 수 있다. 본 연구에서는 소다라임 유리에 블라스팅으로 마이크로 채널을 가공한 후 워터젯을 연속 적용하고, 마이크로 채널의 표면거칠기 및 단면 형상의 변화의 과정을 관찰하였다. 워터젯의 적용결과, 초기단계에서는 블라스팅에 의한 미세 요철이 제거되었고, 이후 표면하부의 크랙이 제거되어 평균 표면거칠기 50 nm 근방의 매끈한 표면을 얻을 수 있었다. 표면거칠기 저감에 동반하여 채널단면의 확장 과정도 함께 관측하였다. 마지막으로 제안한 방법에 의해 미세유체칩의 가공 결과를 제시하였다.

능선 궤적법을 이용한 볼엔드밀 가공면 해석 (Analysis of Machined Surfaces by Ball-end Milling using the Ridge Method)

  • 정태성;남성호;박진호;양민양
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.51-60
    • /
    • 2004
  • Ball-end milling is one of the most common manufacturing processes for the parts with sculptured surface. However, the conventional roughness model is not suitable for the evaluation of surface texture and roughness under highly efficient machining conditions. Therefore, a different approach is needed for the accurate evaluation of machined surface. In this study, a new method, named ‘Ridge method’, is proposed for the effective prediction of the geometrical roughness and the surface topology in ball-end milling. Theoretical analysis of a machined surface texture was performed considering the actual trochoidal trajectories of cutting edge. The characteristic lines of cut remainder are defined as three-types of ‘Ridges’ and their mathematical equations are derived from the surface generation mechanism of ball-end milling process. The predicted results are compared with the results of conventional method. The agreement between the results predicted by the proposed method and the values calculated by the simulation method shows that the analytic equations presented in this paper are useful for evaluating a geometrical surface roughness of ball -end milling process.

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가 (Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method)

  • 김기환;최영재;홍원표;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

초경합금재의 전자현미경(SEM)내 마이크로 절삭 (Micro-cutting of Cemented Carbides with SEM)

  • 허성중
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.55-62
    • /
    • 2003
  • This paper investigates the micro-cutting of cemented carbides using PCD (polycrystalline diamond) and PCBN (polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was studied, including cutting speed, depth of cut and various tool rake angle. Summary of the results are shown below. (1) Three type of chip formation process have been proposed by the results of the direct observation in orthogonal micro-cutting of cemented carbide materials. (2) From the whole observation of chip formation, primary WC particles are crushed and/or fine grained in the shearing deformation zone. A part of them are observed to collide directly with a cutting edge of tool by following the micro-cutting. (3) Surface finish, surface morphology and surface integrity is good to obtain by cutting with PCD cutting tool compared with PCBN. (4) The machined surface has the best quality near the low cutting speed of 10${\mu}m$/sec with a cutting depth of 10 ${\mu}m$ using 0$^\circ$ rake angle and 3$^\circ$ flank angle in this condition, but it was found that excessively low speed, for example the extent of 1 ${\mu}m$/sec, is not good enough to select for various reason.